• Title/Summary/Keyword: Ammonia Loading

Search Result 115, Processing Time 0.022 seconds

Annual Runoff Loading of Nitrogen and Phosphorus from a Paddy Field

  • Han, Kang-Wan;Cho, Jae-Young;Choi, Jin-Kyu
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.29-33
    • /
    • 1999
  • The present study examined annual runoff loading of nitrogen and phosphorus in the paddy field from 1 May, 1997 to 30 April, 1998. In the investigated area, the amount of rainfall was 1,095.6 mm and 414.6 mm during cropping season and non-cropping season. The annual rainfall was 1,510.2 mm. The total amount of runoff water was 1,043.2 mm and 281.0mm during cropping season and non-cropping season, and the added total amount of runoff water during two seasons was 1,324.2 mm. The runoff loading of nutrients caused by runoff water was measured as follows. The total-N was 149.23 and $8.67kg\;ha^{-1}$ (total amount=$157.90kg^{-1}ha^{-1}yr^{-1}$), the ammonia-N 102.98 and $4.44kg\;ha^{-1}$ ($107.42kg^{-1}ha^{-1}yr^{-1}$), the nitrate-N 28.45 and $1.23kg\;ha^{-1}$ ($29.68kg^{-1}ha^{-1}yr^{-1}$), the total-P 4.16 and $0.38kg\;ha^{-1}$ ($4.54kg^{-1}ha^{-1}yr^{-1}$) during cropping and non-cropping season respectively. When the loss ratio was calculated based on amounts of chemical fertilizer, about 68.6% of nitrogen and 16.7% of phosphorus was lost by runoff from applied fertilizer amount.

  • PDF

Characterization of Vanadium Oxide Supported on Zirconia and Modified with MoO3

  • Sohn, Jong-Rack;Seo, Ki-Cheol;Pae, Young-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.311-317
    • /
    • 2003
  • Vanadium oxides supported on zirconia and modified with MoO₃were prepared by adding Zr(OH)₄powder into a mixed aqueous solution of ammonium metavanadate and ammonium molybdate followed by drying and calcining at high temperatures. The characterization of prepared catalysts was performed using FTIR, Raman spectroscopy and solid-state $^{51}V$ NMR. In the case of a calcination temperature of 773 K, for samples containing low loading of $V_2O_5$, below 15 wt %, vanadium oxide was in a highly dispersed state, while for samples containing high loading of $V_2O_5$, equal to or above 15 wt %, vanadium oxide was well crystallized because the $V_2O_5$ loading exceeded the formation of a monolayer on the surface of $ZrO_2$. The $ZrV_2O_7$ compound was formed through the reaction of $V_2O_5\;and\;ZrO_2$ at 873 K and the compound decomposed into $V_2O_5\;and\;ZrO_2$ at 1073 K, which were confirmed by FTIR spectroscopy and solid-state $^{51}V$ NMR. IR spectroscopic studies of ammonia adsorbed on $V_2O_5-MoO_3/ZrO_2$ showed the presence of both Lewis and Bronsted acids.

Recycling Water Treatment of Aquaculture by Using Trickling Filter Process (살수여상공법을 이용한 양어장 순환수처리)

  • KIM Jeong-Sook;LEE Byung-Hun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.2
    • /
    • pp.230-237
    • /
    • 1996
  • The objective of the present study is to evaluate organic removal efficiencies, nitrogen removal efficiencies, kinetic constant, sludge production rates, oxygen requirements, and optimum treatment renditions for recycling water treatment of aquaculture by using a trickling filter process. When the loading rates were $0.500\~0.082kg\;COD/m^3/day$ and $0.271\~0.044kg\;NH_4^+-N/m^3/day$, SCOD and ammonia removal efficiencies were $74.5\~84.0\%$ and $43.7\~61.8\%$, respectively. The maximum removal rate of ammonia was 119.5 mg/L/day. Observed cell yield coefficient in the trickling filter reactor was 0.572 kg VSS/kg $BOD_{rem}$. When the hydraulic loading rate was $6.712\~40.341m^3/m^2/day$, oxygen uptake rate was $1.33\~7.22\;mg\;O_2/L/hr$.

  • PDF

TREATMENT OF HIGH-CONCENTRATION SWINE WASTEWATER BY ANAEROBIC DIGESTION AND AN AQUATIC PLANT SYSTEM

  • Kim, B.U.;Kwon, J.H.
    • Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.134-142
    • /
    • 2006
  • The treatment of high-strength swine wastewater by anaerobic digestion combined with an aquatic plant system was investigated. Anaerobic digestion of swine wastewater gave volatile solids (VS) removal efficiencies of 43.3%, 52.1% and 54.5% for hydraulic retention times (HRTs) of 20, 30, 40 days, respectively. The removal efficiencies of VS, total chemical oxygen demand (TCOD) and soluble chemical oxygen demand (SCOD) decreased with increasing VS volumetric loading rate (VLR). Higher organic removal efficiency was observed at longer HRTs for the same VS volumetric loading rate. As VS volumetric loading rate increased, biogas production increased and the methane content of the biogas decreased. Experiments using duckweed (Lemna species) as an aquatic macrophyte gave the following results. In the case of nitrogen, removal efficiency was above 60% and effluent concentration was below 10.0 mg/L when the influent ammonia-N loading was about $1.0\;g/m^2/day$. In the case of phosphorus, removal efficiency was above 55% and effluent concentration was below 2.0 mg/L when the influent $PO_4$-P loading was about $0.15\;g/m^2/day$. In addition, crude protein and phosphorus content of duckweed biomass increased from 15.6% to 41.6% and from 0.8% to 1.6%, respectively, as the influent nutrient concentration increased. The treatment of high-strength swine wastewater by anaerobic digestion combined with an aquatic plant system offers good performance in terms of organics and nutrient removal for relatively low operation and maintenance costs. The results indicate that under appropriate operational conditions, the effluent quality is within the limits set by Korean discharge criteria.

Transient Behaviors of a Two-Stage Biofilter Packed with Immobilized Microorganisms when Treating a Mixture of Odorous Compounds (미생물 포괄고정화 담체를 이용한 이단 바이오필터에서의 오염부하량 동적 부하변동시 복합악취 제거효율 변화특성)

  • NamGung, Hyeong-Kyu;Shin, Seung-Kyu;Hwang, Sun-Jin;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1126-1133
    • /
    • 2010
  • A two-stage biofilter was constructed and utilized to determine the removal efficiency when treating dynamic loading of a mixture of odorous compounds including benzene, toluene, p-xylene, ammonia and hydrogen sulfide. A yeast strain, Candida tropicalis, and a sulfur oxidizing bacterial (SOB) strain, Acidithiobacillus caldus sp., were immobilized in polyurethane media and packed in the two-stage biofilter. The experiment of dynamic loading variation was composed of (1) stepwise loading variation of all the odorous compounds (total EC test), (2) stepwise loading variation of each odorous compound, and (3) intermittent loading variation with 2-day-off and 3-day-on. The total EC test showed that the maximum elimination capacity was $61\;g/m^3/hr$ for total VOCs, and 5.2 and $9.1\;g/m^3/hr$ for ammonia and hydrogen, respectively. In addition, the inhibition between VOCs was observed when the loading of each individual VOC was varied. Especially the stepwise increase in toluene loading resulted in decreases of benzene and p-xylene removal efficiencies about 30% and 25%, respectively. However, the inhibition between organic and inorganic compounds was not observed. The intermittent loading variation with 2-day-off and 3-day-on showed that greater than 95% of the overall removal efficiency was restored in two days after the loading resumed. Consequently, the two-stage biofilter packed with immobilized microorganisms showed advantages over conventional biofilters for the simultaneous treatment of the mixture of organic and inorganic odorous compounds.

A study on odor and ventilation in waste treatment facilities (폐기물 처리시설에서의 악취 및 환기에 관한 연구)

  • Seo, Byung-Suk;Jeon, Yong-Han
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.28-33
    • /
    • 2020
  • Recently, as the income level and quality of life have improved, the desire for a pleasant environment has increased, and a deodorization plan is required through thorough prevention and diffusion of odorous substances in waste treatment facilities recognized as hateful facilities, appropriate collection, and selection of the right prevention facilities. In this study, a waste disposal facility was modeled and computerized analysis for odor and ventilation analysis was conducted. Numerical analysis of the waste treatment facility was performed at the size of the actual plant. CATIA V5 R16 for numerical model generation and ANSYS FLUENT V.13 for general purpose flow analysis were used as analysis tools. The average air-age of the internal was 329 seconds, and the air-flow velocity was 0.384m/s. The odor diffusion analysis inside the underground pump room showed congestion-free air circulation through streamline distribution and air-age distribution. This satisfies the ASHRAE criteria. In addition, the results of diffusion analysis of odorous substances such as ammonia, hydrogen sulfide, methyl mercaptan and dimethyl sulfide were all expected to satisfy the regulatory standards. Particularly in the case of the waste loading area, the air-flow velocity was 0.297m/s, and the result of meeting the regulatory standards with 0.167ppm of ammonia, 0.00548ppm of hydrogen sulfide, 0.003ppm of methyl mercaptan, and 0.003ppm of dimethyl sulfide was found.

Evaluation of Advanced Water Treatment Operation

  • Kim, Seung-Hyun
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2002.04a
    • /
    • pp.54-64
    • /
    • 2002
  • This study evaluated advanced water treatment (AWT) system in Korea. There are currently 16 plants operating with AWT. However, no attempt has been made to evaluate AWT system. This study selected one water treatment plant with AWT (pre-ozonation + BAC). Using the operation data from 1995 to 2001 and pilot study results, the post-evaluation of the AWT system has been conducted. The study found that AWT improved water qualities of organic, ammonia, and turbidity, as expected. However, the extent of the improvement was generally short of the pilot study expectations. Pre-ozonation failed to decrease coagulant consumption. The dosage increased rather than decreased. AWT was, however, successful to decrease chlorine consumption. The chlorine reduction was related to the change in raw water characteristics and AWT introduction. Pre-ozonation failed to decrease coagulant consumption. The dosage increased rather than decreased. AWT was, however, successful to decrease chlorine consumption. The chlorine reduction was related to the change in raw water characteristics and AWT introduction, Both operation of pre-ozonation and reduced ammonia loading were responsible for the reduction. AWT increased the operation cost. Maintenance, raw water, and power cost increased, while labor and chemical cost decreased. Manpower reduction resulting form automation caused the decrease of labor cost. The reduction of chlorine consumption caused the decrease of chemical cost.

  • PDF

Influence of Performance and Microbial Community by Internal pH Control on Anaerobic Digestion of Food Waste Leachate (음폐수 이용 혐기성 소화의 내부 pH 조절에 따른 바이오가스 전환율 비교 및 미생물 군집도 분석)

  • Yun, Yeo-Myeong;Cho, Si-Kyung;Jeong, Da-Young;Lee, Eun-Jin;Huh, Kwan-Yong;Shin, Dong-Hyuk;Lee, Chang-Kyu;Shin, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.571-578
    • /
    • 2013
  • In this study, the performance and microbial community of anaerobic digestion fed by food waste leachate at low organic loading rate were investigated with and without internal pH control. Experimental results show that similar biogas yield was achieved in both reactors regardless of increase in pH, the concentrations of free ammonia and volatile fatty acids in case of without internal pH controlled one. The results of a methanogenic community analysis by Polymerase Chain Reaction and Denaturing Gradient Gel Electrophoresis revealed that the apparent preponderance of Methanosarcina sp. could be one of reasons for the maintenance of reactor stability.

Recycling Water Treatment of Aquaculture by Using Three Phase Fluidized Bed Reactor (삼상유동층 반응기를 이용한 양어장 순환수 처리에 관한 연구)

  • LEE Byung-hun;KIM Jeong-sook;KANG Im-suk
    • Journal of Aquaculture
    • /
    • v.7 no.3
    • /
    • pp.177-187
    • /
    • 1994
  • The objective of the present study were to evaluate nitrification characteristics and determine optimum treatment conditions of three phase fluidized bed reactor for recycling water treatment of aquaculture. When the loading rates were 2.739-0.086kg $COD/m^3/day$ and 1.575-0.128kg $NH_4\;^+-N/m^3/day$, COD and ammonia removal efficiencies were $56.3-94.7\%\;and\; 67.3­92.6\%$, respectively. The maximum removal rates of COD and ammonia were 1200mg/l/day and 488mg/l/day, respectively. Ammonia removal rates were more than $90\%$ beyond 1hr HRT. The ammoniaremoval efficiency was sensitive to the variation of media concentration and air flowrate.

  • PDF

Pretreatment of Rice Straw by Using Ammonia Recycled Percolation Process (암모니아 재순환 침출공정을 이용한 볏짚의 전처리)

  • Kang, Choon-Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.89-95
    • /
    • 2009
  • Because of high contents of cellulose (~37 wt%) and hemicellulose (~17%), rice straw seems to be a potential lignocellulosic biomass for production of bioethanol. In this study, Ammonia Recycled Percolation (ARP) pretreatment of rice straw was extensively investigated. In particular, the experimental study included the effects of temperature, reaction time and concentration of ammonia on compositions and enzymatic digestibility of the resulting solid residues; the ranges of pretreatment conditions were, in turn, $150{\sim}190^{\circ}C$, 10~90 min and 0~20 wt%. Through ARP pretreatment, the lignin content was reduced by as high as ~84% while 20~80% of the hemicellulose was also solubilized. The solid residue resulted from the pretreatment with 15 wt% aqueous ammonia solution at $170^{\circ}C$ for 90 mim showed as high as ~90% of digestibility with 15FPU/g of glucan enzyme loading. Supplement of xylanese to cellulase led to a notable enhancement of digestibility, indicating a discernable inhibitory role of hemicellulose. Simultaneous Saccharification and Fermentation (SSF) and Simultaneous Saccharification and Co-Fermentation (SSCF) were performed to obtain ethanol productions of 13.8 g/L (corresponding to 81% yield) and 15 g/L (corresponding to 89% yield), respectively.