• Title/Summary/Keyword: Ammonia Gas

Search Result 717, Processing Time 0.029 seconds

Desalination of Traditional Soy Sauce Using Electrodialysis (전기투석에 의한 재래식 간장의 저염화)

  • Chung, Jae-Ho;Mok, Chul-Kyoon;Lim, Sang-Bin;Woo, Gun-Jo;Baek, Hyung-Hee;Park, Young-Seo
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.811-817
    • /
    • 2002
  • Korean traditional soy sauce was desalted using electrodialyzer, and their physicochemical properties were analyzed. The salt content of soy sauce significantly decreased from initial 18.9 (w/v) to 0.47% (w/v) and the volume also decreased to 330 mL when 1,000 mL of soy sauce was desalted for 450 min at a current of 2 A. During the desalting process, the numbers of viable cells of total bacteria, yeasts, and molds increased due to the concentration effect of the electrodialysis. Turbidity increased from 3.1 to 8.5, and total nitrogen, total sugar, and reducing sugar contents also increased. The pH, and amino nitrogen and volatile base nitrogen contents slightly decreased, with ammonia content significantly decreasing from 19.4 to $1.3\;{\mu}mol/mL$. Free amino acids content increased twofold after electrodialysis. Gas chromatograms of soy sauce showed that profiles of the flavoring compounds did not change when electrodialyzed for 360 min, but most were removed after 540 min.

Analysis of an internal flow with multi-perforated tube geometry in an integrated Urea-SCR muffler (다공튜브 형상변화에 따른 촉매 삽입형 Urea-SCR 머플러 내부유동 해석)

  • Moon, Namsoo;Lee, Sangkyoo;Lee, Jeekeun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.500-509
    • /
    • 2013
  • This study reports a numerical analysis of the internal flow characteristics of the integrated urea-SCR muffler system with the various geometries of the multi-perforated tube which is set up between the muffler inlet and in front of SCR catalysts. The multi-perforated tube is generally used to disperse uniformly the urea-water solution spray and to make better use of the SCR catalyst, resulting in the increased $NO_x$ reduction and decreased ammonia slip. The effects of the multi-perforated tube orifice area ratios on the velocity distributions in front of the SCR catalyst, which is ultimately quantified as the uniformity index, were investigated for the optimal muffler system design. The steady flow model was applied by using a general-purpose commercial software package. The air at the room temperature was used as a working fluid, instead of the exhaust gas and urea-water solution spray mixture. From the analysis results, it was clarified that the multi-perforated tube geometry sensitively affected to the formation of the bulk swirling motion inside the plenum chamber set in front of the SCR catalyst and to the uniformity index of the velocity distribution produced at the inlet of the catalyst.

Effects of Biologically Active Materials Prepared for Several Minerals and Plants on the Growth of Rumen Microbes (무기물성 및 식물성 생리활성 물질이 반추위 미생물의 성장에 미치는 영향)

  • Shin, Sung-Whan;Lee, Shin-Ja;Ok, Ji-Un;Lee, Sang-Min;Lim, Jung-Hwa;Kim, Kyoung-Hoon;Moon, Yea-Hwang;Lee, Sung-Sill
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1555-1561
    • /
    • 2007
  • In order to know the effects of scoria, germanium, charcoal, ginger, stevia, and CLA(Conjugated Linoleic Acid) as biologically active materials on pathogenic microbes and rumen anaerobic microbes, the growth rate of pathogens (including Escherichia coli O157, Salmonella paratyphi, Listeria monocytogenes and Staphylococcus aureus) and in vitro lumen microbial growth, gas production, ammonia concentration, carboxymethyl-cellulase (CMCase) activity, and microbial populations were investigated. The growth of pathogenic microbes was inhibited by the supplement of 0.10% ginger. Ginger had powerful antimicrobial properties on all the pathogens used in this experiments. Additionally in the antibacterial assay by paper disc method, we could observe the clear zone of similar area with the positive control(antibiotics) for E. coli as applied with the 10% stevia or the 10% CLA only. The supplements of ginger, stevia and CLA in vitro rumen fermentation inhibited populations of rumen bacteria and protozoa. Particularly supplement of ginger resulted in remarkable reduction of the protozoa population, which means it might serve as a source inhibiting material of methane creation in the rumen.

1,1-Difluoroethane Synthesis from Acetylene over Fluorinated γ-Al2O3 (불화된 γ-Al2O3상에서 아세틸렌으로부터 1,1-difluoroethane의 합성)

  • Lee, Youn-Woo;Lee, Kyong-Hwan;Lim, Jong Sung;Kim, Jae-Duck;Lee, Youn Yong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.629-633
    • /
    • 1998
  • The synthesis of 1,1-difluoroethane from acetylene as a function of HF/acetylene ratio, contact time and reaction temperature was studied on a fluorinated ${\gamma}-Al_2O_3$. The fluorination of ${\gamma}-Al_2O_3$ was treated with pure HF gas at high temperature. The crystallinity, the porosity, and the acid properties of the prepared samples were examined using XRD, the nitrogen adsorption, pyridine-IR and ammonia-TPD respectively. The activity was enhanced by further fluorination of alumina. The fraction of 1,1-difluoroethane was obtained above 90% at reaction temperature of about $200^{\circ}C$. The ratio of 1,1-difluoroethane to vinylfluoride over fluorinated ${\gamma}-Al_2O_3$ catalyst was increased with the mole ratio of HF/acetylene and contact time, and was found to be the highest ratio at reaction temperature of $200^{\circ}C$.

  • PDF

A Study on NH3-SCR Vanadium-Based Catalysts according to Tungsten Content for Removing NOx Generated from Biogas Cogeneration (바이오가스 열병합 발전에서 발생하는 NOx 제거를 위한 텅스텐 함량에 따른 NH3-SCR 바나듐계 촉매 연구)

  • Jung, Min Gie;Hong, Sung Chang
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.315-324
    • /
    • 2021
  • In this study, a vanadium catalyst study was conducted on the various characteristics of the exhaust gas in the Selective-Catalytic-Reduction (SCR) method in which nitrogen oxides emitted from cogeneration using biogas are removed by using ammonia as a reducing agent and a catalyst. V/W/TiO2, a commercial catalyst, was used as the catalyst in this study, and the effect was confirmed according to the tungsten content under various operating conditions. As a result of the NH3-SCR experiment, the denitrification performance was confirmed at 380 ~ 450 ℃ more than 95%, and durability to trace amounts of SO2 was confirmed through the SO2 durability experiment and TGA analysis. As a result of H2-TPR analysis, the higher the tungsten content, the better the redox properties. Accordingly, enhanced oxidizing properties were confirmed in the oxidation test for a trace amount of carbon monoxide emitted from the cogeneration. In NH3-DRIFTs analysis, it was confirmed that the higher the tungsten content, the higher both the Bronsted/Lewis acid sites and the better the thermal durability when tungsten is added to the catalyst. Based on the experiments under various operating conditions, it is considered that a catalyst with a high tungsten content is suitable to be applied to cogeneration using biogas.

Study on the Fuel Decomposition Characteristics and Coke Formation by Type of Endothermic Fuel and Method of Catalyst Molding (흡열연료 종류와 촉매 성형 방법에 따른 분해특성과 코크 생성에 관한 연구)

  • Lee, Tae Ho;Kang, Saetbyeol;Kim, Sung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.611-619
    • /
    • 2019
  • This study was carried out to investigate fuel decomposition characteristics and coke formation according to types of endothermic fuels and methods of catalyst molding. Methylcyclohexane (MCH), n-dodecane, and exo-tetrahydrodipentadiene (exo-THDCP) were used as the endothermic fuels. As a catalyst, USY720 supported with platinum was used. It was manufactured by only using pressure to disk-type, or pelletized with a binder and a silica solution. The characteristics of the catalysts according to the molding method were analyzed by X-ray diffraction analysis, scanning electron microscopy, nitrogen adsorption-desorption isotherm, and ammonia temperature programmed desorption analysis. The reaction was carried out under conditions of high temperature and high pressure ($500^{\circ}C$, 50 bar) in which the fuel could exist in a supercritical state. The product was analyzed by gas chromatograph/mass spectrometer and the coke produced by the catalyst was analyzed by thermogravimetric analyzer. After the reaction, the composition of the products varied greatly depending on the structure of the fuel. In addition, the crystallinity and surface properties of the catalysts were not changed by the method of catalyst molding, but the changes of the acid sites and the pore characteristics were observed, which resulted in changes in the amount and composition of products and coke.

The Study of Fermented Chestnut Meal and Its Rumen Fermentation Characteristics (밤의 부위별 발효사료 제조 및 이들의 반추위 내 발효특성에 관한 연구)

  • Joo, Young-Ho;Kim, Dong-Hyeon;Lee, Hyuk-Jun;Lee, Seong-Shin;Paradhipta, Dimas H.V.;Ha, Chang-Ju;Kim, Sam-Churl
    • Journal of Environmental Science International
    • /
    • v.28 no.6
    • /
    • pp.527-533
    • /
    • 2019
  • The aim of present study was to investigate the effect of three types of Chestnut Meals (CM) on chemical composition and rumen fermentation characteristics of the fermented diet. The inoculants consisted of Lactobacillus acidophilus, Bacillus subtilis, and Sacaromyces cerevisiae and were applied to three different types of CM; Whole Chestnut (WC), endodermis (EN), and kernel (KE). All types of CMs were ensiled at $39^{\circ}C$ for 0, 1, 2, 4, or 6 days. After ensiling, the fermented CMs were sub-sampled for laboratory assays. On day six of fermentation, counts of the lactic acid-producing Bacillus subtilis, and yeast were higher (P<0.05) in WC than in the other CM types. On day four, KE had higher (P<0.05) crude protein content but lower (P<0.05) neutral detergent fiber and acid detergent fiber contents than the other treatments. In terms of rumen digestibility, KE had the highest (P<0.05) in vitro digestibility of dry matter (IVDMD), neutral detergent fiber digestibility (IVNDFD), total volatile fatty acid (VFA), propionate, butyrate concentrations, and total gas volume, as well as the lowest (P<0.05) acetate concentration. On the other hand, EN had the highest (P<0.05) pH and ammonia-N concentration in the rumen. In the rumen, even though WC application produced the highest microbial count and fermentation characteristics, it did not have a beneficial effect on rumen digestibility. Therefore, this study concluded that application of KE could be recommended due to the observed improvements in IVDMD and IVNDFD.

Ruminal pH pattern, fermentation characteristics and related bacteria in response to dietary live yeast (Saccharomyces cerevisiae) supplementation in beef cattle

  • Zhang, Xiangfei;Dong, Xianwen;Wanapat, Metha;Shah, Ali Mujtaba;Luo, Xiaolin;Peng, Quanhui;Kang, Kun;Hu, Rui;Guan, Jiuqiang;Wang, Zhisheng
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.184-195
    • /
    • 2022
  • Objective: In this study we aimed to evaluate the effect of dietary live yeast supplementation on ruminal pH pattern, fermentation characteristics and associated bacteria in beef cattle. Methods: This work comprised of in vitro and in vivo experiments. In vitro fermentation was conducted by incubating 0%, 0.05%, 0.075%, 0.1%, 0.125%, and 0.15% active dried yeast (Saccharomyces cerevisiae, ADY) with total mixed ration substrate to determine its dose effect. According to in vitro results, 0.1% ADY inclusion level was assigned in in vivo study for continuously monitoring ruminal fermentation characteristics and microbes. Six ruminally cannulated steers were randomly assigned to 2 treatments (Control and ADY supplementation) as two-period crossover design (30-day). Blood samples were harvested before-feeding and rumen fluid was sampled at 0, 3, 6, 9, and 12 h post-feeding on 30 d. Results: After 24 h in vitro fermentation, pH and gas production were increased at 0.1% ADY where ammonia nitrogen and microbial crude protein also displayed lowest and peak values, respectively. Acetate, butyrate and total volatile fatty acids concentrations heightened with increasing ADY doses and plateaued at high levels, while acetate to propionate ratio was decreased accordingly. In in vivo study, ruminal pH was increased with ADY supplementation that also elevated acetate and propionate. Conversely, ADY reduced lactate level by dampening Streptococcus bovis and inducing greater Selenomonas ruminantium and Megasphaera elsdenii populations involved in lactate utilization. The serum urea nitrogen decreased, whereas glucose, albumin and total protein concentrations were increased with ADY supplementation. Conclusion: The results demonstrated dietary ADY improved ruminal fermentation dose-dependently. The ruminal lactate reduction through modification of lactate metabolic bacteria could be an important reason for rumen pH stabilization induced by ADY. ADY supplementation offered a complementary probiotics strategy in improving gluconeogenesis and nitrogen metabolism of beef cattle, potentially resulted from optimized rumen pH and fermentation.

Effect of Protein Fractionation and Buffer Solubility of Forage Sources on In Vitro Fermentation Characteristics, Degradability and Gas Production (조사료 자원의 단백질 분획 및 Buffer 추출이 In Vitro 발효 성상, 분해율 및 Gas 생성량에 미치는 효과)

  • Jin, Guang Lin;Shinekhuu, Judder;Qin, Wei-Ze;Kim, Jong-Kyu;Ju, Jong-Kwan;Suh, Seong-Won;Song, Man-Kang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.1
    • /
    • pp.59-74
    • /
    • 2012
  • Buffer solubility and protein fractionation were evaluated from the hays (timothy, alfalfa and klein) and straws (tall fescue and rice), and $In$ $vitro$ trial was conducted to examine the effect of buffer extraction on fermentation characteristics, degradability and gas ($CO_2$ and $CH_4$) production. Buffer soluble protein (SP) content and A fraction in total protein were highest in alfalfa hay as 61% and 41.77%, respectively while lowest in rice straw (42.8% and 19.78%, respectively). No difference was observed in B1 fraction among forages but B2 fraction was slightly increased in klein hay (12.34%) and tall fescue straw (10.05%) compared with other forages (6.34~8.85%). B3 fraction of tall fescue was highest as 38.49% without difference among other forages while C fraction was highest in rice straw. pH in incubation solution was higher in all forages after extraction than before extraction at 3h (P<0.01) and 6h (P<0.05), and pH from hays of timothy and alfalfa was higher than the other forages at 6h (P<0.05) and 12h (P<0.001). Regardless of extraction, ammonia-N concentration from alfalfa hay was increased at all incubation times and extraction effect was appeared only at 3h incubation time (P<0.01). Total VFA concentration from alfalfa hay was highest up to 24h incubation while those from tall fescue straw and rice straw were lowest. Buffer extraction decreased (P<0.01~P<0.001) the total VFA concentration. Acetic acid proportion was increased (P<0.001) before extraction of forages but no difference was found between forages. Propionic acid($C_3$) proportion was also increased(P<0.001) before extraction in all forages than in straws at 3h, 24h and 48h incubations, and $C_3$ from hays were mostly higher (P<0.05) than from straws. Butyric acid proportion, however, was not affected by extraction at most incubation times. Parameter 'a' regarding to the dry matter (DM) degradation was increase (P<0.001) in all forages before extraction, and was decreased (P<0.05) in tall fescue straw and rice straw compared with hays. Parameter 'b' was also increased (P<0.001) before extraction but no difference was found between forages. Effective degradability of DM (EDDM) was higher (P<0.001) before extraction in most forages except for rice straw. Buffer extraction decreased (P<0.05) all parameters (a, b, and c) regrading to the crude protein (CP) degradation but no difference was found between forages. Effective degradation of CP (EDCP) was lower (P<0.05) in straws than in hays. Parameters 'a' and 'b' regarding to the NDF degradation (P<0.01) and effective degradability of NDF (EDNDF, P<0.001) were also higher in forages before extraction than after extraction but no difference was found between forages. Buffer extraction reduced (P<0.05~P<0.001) $CO_2$ production from all the forages uo to 24h incubation and its production was greater (P<0.05~P<0.01) from hays than straws. Methane ($CH_4$) production was also greater (P<0.01~P<0.001) in all forages at all incubation times, and its production was greater (P<0.05) from hays than from straws at most incubation times. Based on the results of the current study, it can be concluded that buffer solubility and CP fractionation might be closely related with $In$ $vitro$ VFA concentration, degradability and gas ($CO_2$ and $CH_4$) production. Thus, measurement of buffer solubility and protein fractionation of forages might be useful to improve TMR availability in the ruminants.

Bacterial Community Dynamics during Swine In vitro Fermentation Using Starch as a Substrate with Different Feed Additives for Odor Reduction

  • Alam, Md.J.;Jeong, C.D.;Mamuad, L.L.;Sung, H.G.;Kim, D.W.;Cho, S.B.;Lee, K.;Jeon, C.O.;Lee, Sang-S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.5
    • /
    • pp.690-700
    • /
    • 2012
  • The experiment was conducted by in vitro fermentation and bacterial community analysis to investigate the reduction of odorous compounds in response to the use of feed additives (FA) during carbohydrate overload in growing pigs. Soluble starch at 1% (control) and various FA at 0.1% Ginseng meal (FA1); Persimmon leaf (FA2); Gingko nut (FA3) and Oregano lippia (FA4) were added to fecal slurry and incubated anaerobically for 12 and 24 h. In vitro parameters and microbial diversity of the dominant bacteria following fermentation were analyzed using Denaturing Gradient Gel Electrophoresis (DGGE), band cloning and sequencing of the V3 region. Results showed that total gas production increased with the advancement of incubation (p<0.05). pH values of FAs and control groups were decreased except the FA4 group which increased somewhat from 12 to 24 h (p<0.05). Ammonia nitrogen ($NH_3$-N) and $H_2S$ gas concentrations were comparatively lower in both stages in FA4 treatment than in the other groups (p<0.05). Hence, $NH_3$-N concentrations in liquid phases were increased (p<0.05) from 12 to 24 h, but the trend was lowest in FA4 than in the other groups at both stages. The total VFA production was comparatively lower and butyrate levels were moderate in FA4 group than in the the other groups during both stages (p<0.05). Indirect odor-reducing compounds such as $NO_2$, $NO_3$ and $SO_4$ concentrations were higher in the FA4 and FA3 than in the other groups at 24 h (p<0.05). After fermentation, ten dominant bands appeared, six of which appeared in all samples and four in only the FA4 treated group. The total number of DGGE bands and diversity was higher in the FA4-group compared to other groups. Additionally, similarity indices were lowest (71%) in the FA4, which represented a different bacterial community compared with the other groups. These findings indicate that $NH_3$-N, $H_2S$ and VFA production was minimal, and pH was also better in the FA4 group than in the other groups. Furthermore, the conversion of odor-reducing indirect compounds or their intermediates was higher in the FA4 group in compared to the other groups. FA4 group generated less odorous products and more indirect products by in vitro fermentation at 24 h, and their microbial pattern appeared to differ from that of the other groups. These findings suggest that this particular FA could change the microbial population, which may have a beneficial effect on odor reduction. It is recommended that the oregano lippia may be supplied to growing pigs as FA along with excess carbohydrate sources to reduce the production of odorous compounds.