• Title/Summary/Keyword: Ammonia Gas

Search Result 718, Processing Time 0.026 seconds

Characteristics of Atmosphere-rice Paddy Exchange of Gaseous and Particulate Reactive Nitrogen in Terms of Nitrogen Input to a Single-cropping Rice Paddy Area in Central Japan

  • Hayashi, Kentaro;Ono, Keisuke;Matsuda, Kazuhide;Tokida, Takeshi;Hasegawa, Toshihiro
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.202-216
    • /
    • 2017
  • Nitrogen (N) is an essential macronutrient. Thus, evaluating its flows and stocks in rice paddy ecosystems provides important insights into the sustainability and environmental loads of rice production. Among the N sources of paddy fields, atmospheric deposition and irrigation inputs remain poorly understood. In particular, insufficient information is available for atmosphere-rice paddy exchange of gaseous and particulate reactive N (Nr, all N species other than molecular N) which represents the net input or output through dry deposition and emission. In this study, we assessed the N inputs via atmospheric deposition and irrigation to a Japanese rice paddy area by weekly monitoring for 2 years with special emphasis on gas and particle exchange. The rice paddy during the cropping season acted as a net emitter of ammonia ($NH_3$) to the atmosphere regardless of the N fertilizer applications, which reduced the effects of dry deposition to the N input. Dry N deposition was quantitatively similar to wet N deposition, when subtracting the rice paddy $NH_3$ emissions from N exchange. The annual N inputs to the rice paddy were 3.2 to $3.6\;kg\;N\;ha^{-1}\;yr^{-1}$ for exchange, 8.1 to $9.8\;kg\;N\;ha^{-1}\;yr^{-1}$ for wet deposition, and 11.1 to $14.5\;kg\;N\;ha^{-1}\;yr^{-1}$ for irrigation. The total N input, 22.8 to $27.5\;kg\;N\;ha^{-1}\;yr^{-1}$, corresponded to 38% to 55% of the N fertilizer application rate and 53% to 67% of the brown rice N uptake. Monitoring of atmospheric deposition and irrigation as N sources for rice paddies will therefore be necessary for adequate N management.

Implementation of Swinery Integrated Management System in Ubiquitous Agricultural Environments (유비쿼터스 농업환경에서의 돈사 통합관리 시스템 구현)

  • Hwang, Jeong-Hwan;Lee, Meong-Hun;Ju, Hui-Dong;Lee, Ho-Chul;Kang, Hyun-Joong;Yoe, Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2B
    • /
    • pp.252-262
    • /
    • 2010
  • Recently, the USN (Ubiquitous Sensor Network) technology is emerging as an aspect of digital convergence trends which is being rapidly evolving in the whole society. The technological feasibility for the various application services using the USN is researched in numerous industries, but, in the agricultural field, the market of USN application service, technology adoption and commercialization have been delayed. In the agricultural field, the ubiquitous technologies could lead to huge change in the conventional surroundings such as growth environment of livestock, crop cultivation and harvest. In this paper, to offer a integrated management, we construct a u-swinery(ubiquitous swinery) system which is consisted with USN environmental sensors to collect information from physical phenomenon such as luminance, relative humidity, temperature and ammonia gas. Numbers of CCTV were also installed to monitor inside and outside of the swinery. The u-swinery integrated management system can monitor and control the condition of swinery from remote sites. Furthermore, by gathering the cumulative environmental data from the system, the optimal growth condition for the livestock could be created.

Nitrogen Dynamics and Growing of Shrimp (Fenneropenaeus chinensis) in the High Density Aquaculture Ponds (고밀도 축제식 양식장의 질소역학과 대하 (Fenneropenaeus chinensis) 성장)

  • KANG Yun Ho;YOON Yang Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.1
    • /
    • pp.24-32
    • /
    • 2004
  • A mathematical model is used to investigate nitrogen dynamics in the intensive aquaculture ponds in the western coast of Korea. Parameters associated with water quality, sediments and growing of shrimp (Fenneropenaeus chinensis) are measured to calibrate the model for feeding ponds A and B and storage ponds. The model describes the fate of nitrogen including loadings of ammonia from feeds, phytoplankton assimilation, nitrification, sedimentation, volatilization and discharge. The model obtains good agreements with the measured values of TAN $(NH_4,\;NH_3),\;NO(NO_2,\;NO_3)$ and Chl (chlorophyll a). Impacts of water exchange on TAN and Chl are investigated, showing that the range of 0.01-0.2 (/day) cannot effectively reduce TAN but reduces Chl. Nitrogen in the ponds A is removed by sedimentation $66\%,$ volatilization $8\%,$ discharge of particulate and dissolved $8\%.$ The pond B shows $56\%\;and\;26\%$ of sedimentation and volatilization, respectively, to yield $10\%.$ decrease and 8c/o increase compared to those in the pond A. While the pond A has larger area (1.02:0.66 ha) and same stocking density (0.025 md./L) at the beginning of culture, the pond B obtains higher stocking density (0.0065:0.0091 md./L), longer feeding period (103:121 day) and resultant higher shrimp production (1.15:2.13 t/ha/cycle) at harvest. This is possibly due to the hydraulic characteristics driven by paddlewheels. At low ratio of the low speed area and the pond area, the rate of sedimentation is high, while the rate of gas exchange is low. Thus, the measurement and model analysis suggest that water quality and shrimp production are positively correlated with the hydraulic characteristics in the shrimp ponds.

Effect of Biofilter on Reducing Malodor Emission (악취 발산감소를 위한 필터의 이용 효과)

  • 김원영;정광화;노진식;김원호;전병수;류호현;전영륜
    • Journal of Animal Environmental Science
    • /
    • v.4 no.2
    • /
    • pp.161-166
    • /
    • 1998
  • Controlling malodor originating from livestock feces has become a major issue, due to its influence on the health of man and livestock, together with its influences on atmospheric pollution. In this study, Five types of biofilters filled with saw-dust, night soil, fermented compost, leaf mold and a mixture(a compound of night soil, fermented compost and leaf mold at the same rates, respectively) were manufactured and tested. To study the effect of the biofilter on reducing malodor in a composting facility and swine building, a pilot scale composting facility enclosed with polyethylene film was constructed. Swine feces was composted in the facility and malodorous gas generated from the decomposition of organic matter in the feces was gathered by vacuum pump. Each biofilter achieved 87∼96% NH3 removal efficiency. This performance was maintained throughout 10 days of operation. The highest NH3 removal efficiency was achieved by leaf mold on the first day of operation period. It reduced the concentration of NH3 by about 96%. Night soil and fermented compost showed nearly equal performance of 93 to 94% for 10 days from the beginning of operation. The mixture achieved the lowest NH3 removal efficiency. It reduced NH3 concentration by about 89∼94% for 10 days from the beginning of operation. However NH3 removal efficiency of each biofilter declined with the passage of operational time. After 30 days from the beginning of operation, NH3 removal efficiency of each biofilter of each biofilter was below 60%, respectively. The concentration of H2S and CH3-SH originating from compost were equal to or less than 5mg/l and 3mg/l, respectively. After passing throughout the biofilter, the concentration of H2S and CH3-SH were not detected.

  • PDF

Determination of L-Asparagine Using Proteus mirabilis Bacterial Electrode (Proteus mirabilis 박테리아 전극을 이용한 L-Asparagine의 정량)

  • Ihn Gwon-Shik;Moo-Jeong Sohn
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.422-427
    • /
    • 1988
  • The bio-electrode for L-asparagine, excellent in the reproducibility of responsibility, has been constructed by immobilizing the bacterium Proteus mirabilis on an ammonia gas sensor. This electrode was investigated for the effects of pH, temperature, buffer solution, bacterial amounts and interferences, and stability with the lapse of time. The response of the bacterial electrode was linear in the range of $9.0{\times}10^{-5}$$1.0{\times}10^{-2}M$ L-asparagine with a slope of 58.9mV/decade in pH 7.8, 0.05M phosphate buffer solution at $30^{\circ}C$. The bacterial amounts used for this electrode was 3 mg and response time was 7∼9 min. Therefore, this assembly can be used for the determination of L-asparagine.

  • PDF

Effects of Acarbose Addition on Ruminal Bacterial Microbiota, Lipopolysaccharide Levels and Fermentation Characteristics In vitro

  • Yin, Yu-Yang;Liu, Yu-Jie;Zhu, Wei-Yun;Mao, Sheng-Yong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.12
    • /
    • pp.1726-1735
    • /
    • 2014
  • This study investigated the effects of acarbose addition on changes in ruminal fermentation characteristics and the composition of the ruminal bacterial community in vitro using batch cultures. Rumen fluid was collected from the rumens of three cannulated Holstein cattle fed forage ad libitum that was supplemented with 6 kg of concentrate. The batch cultures consisted of 8 mL of strained rumen fluid in 40 mL of an anaerobic buffer containing 0.49 g of corn grain, 0.21 g of soybean meal, 0.15 g of alfalfa and 0.15g of Leymus chinensis. Acarbose was added to incubation bottles to achieve final concentrations of 0.1, 0.2, and 0.4 mg/mL. After incubation for 24 h, the addition of acarbose linearly decreased (p<0.05) the total gas production and the concentrations of acetate, propionate, butyrate, total volatile fatty acids, lactate and lipopolysaccharide (LPS). It also linearly increased (p<0.05) the ratio of acetate to propionate, the concentrations of isovalerate, valerate and ammonia-nitrogen and the pH value compared with the control. Pyrosequencing of the 16S rRNA gene showed that the addition of acarbose decreased (p<0.05) the proportion of Firmicutes and Proteobacteria and increased (p<0.05) the percentage of Bacteroidetes, Fibrobacteres, and Synergistetes compared with the control. A principal coordinates analysis plot based on unweighted UniFrac values and molecular variance analysis revealed that the structure of the ruminal bacterial communities in the control was different to that of the ruminal microbiota in the acarbose group. In conclusion, acarbose addition can affect the composition of the ruminal microbial community and may be potentially useful for preventing the occurrence of ruminal acidosis and the accumulation of LPS in the rumen.

Comparisons of In vitro Nitrate Reduction, Methanogenesis, and Fermentation Acid Profile among Rumen Bacterial, Protozoal and Fungal Fractions

  • Lin, M.;Schaefer, D.M.;Guo, W.S.;Ren, L.P.;Meng, Q.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.4
    • /
    • pp.471-478
    • /
    • 2011
  • The objectives were to compare the ability of various rumen microbial fractions to reduce nitrate and to assess the effect of nitrate on in vitro fermentation characteristics. Physical and chemical methods were used to differentiate the rumen microbial population into the following fractions: whole rumen fluid (WRF), protozoa (Pr), bacteria (Ba), and fungi (Fu). The three nitrogen substrate treatments were as follows: no supplemental nitrogen source, nitrate or urea, with the latter two being isonitrogenous additions. The results showed that during 24 h incubation, WRF, Pr and Ba fractions had an ability to reduce nitrate, and the rate of nitrate disappearance for the Pr fraction was similar to the WRF fraction, while the Ba fraction needed an adaptation period of 12 h before rapid nitrate disappearance. The WRF fraction had the greatest methane ($CH_4$) production and the Pr fraction had the greatest prevailing $H_2$ concentration (p<0.05). Compared to the urea treatment, nitrate diminished net gas and $CH_4$ production during incubation (p<0.05), and ammonia-N ($NH_3$-N) concentration (p<0.01). Nitrate also increased acetate, decreased propionate and decreased butyrate molar proportions (p<0.05). The Pr fraction had the highest acetate to propionate ratio (p<0.05). The Pr fraction as well as the Ba fraction appears to have an important role in nitrate reduction. Nitrate did not consistently alter total VFA concentration, but it did shift the VFA profile to higher acetate, lower propionate and lower butyrate molar proportions, consistent with less $CH_4$ production by all microbial fractions.

Comparison of Passivation Property on Hydrogenated Silicon Nitrides whose Antireflection Properties are Identical (반사방지 특성을 통일시킨 실리콘 질화막 간의 패시베이션 특성 비교)

  • Kim, Jae Eun;Lee, Kyung Dong;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Korean Journal of Materials Research
    • /
    • v.26 no.1
    • /
    • pp.47-53
    • /
    • 2016
  • Silicon nitride ($SiN_x:H$) films made by plasma enhanced chemical vapor deposition (PECVD) are generally used as antireflection layers and passivation layers on solar cells. In this study, we investigated the properties of silicon nitride ($SiN_x:H$) films made by PECVD. The passivation properties of $SiN_x:H$ are focused on by making the antireflection properties identical. To make equivalent optical properties of silicon nitride films, the refractive index and thickness of the films are fixed at 2.0 and 90 nm, respectively. This limit makes it easier to evaluate silicon nitride film as a passivation layer in realistic application situations. Next, the effects of the mixture ratio of the process gases with silane ($SiH_4$) and ammonia ($NH_3$) on the passivation qualities of silicon nitride film are evaluated. The absorption coefficient of each film was evaluated by spectrometric ellipsometry, the minority carrier lifetimes were evaluated by quasi-steady-state photo-conductance (QSSPC) measurement. The optical properties were obtained using a UV-visible spectrophotometer. The interface properties were determined by capacitance-voltage (C-V) measurement and the film components were identified by Fourier transform infrared spectroscopy (FT-IR) and Rutherford backscattering spectroscopy detection (RBS) - elastic recoil detection (ERD). In hydrogen passivation, gas ratios of 1:1 and 1:3 show the best surface passivation property among the samples.

Study of Development of Selective Removal Adsorption Ion Exchange Resin Materials for Fabricated with Chemical-biological Cloth by QFD (QFD 기법을 이용한 특정 유해가스 노출제어 이온선택성 보호복 소재개발연구)

  • Song, Hwa Seon;Koo, Il Seob;Kim, In Sik
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.359-372
    • /
    • 2015
  • Purpose: Through studying the expert's and non-experts panel responses to the questions regarding the attributes of chemical-biological protection cloth quality in terms of the levels of customer demand and technical factors has been studied. We are applied to a QFD matrix with find out the relationship between the selective removal efficiency of chemical-biological cloth and the guidelines of technical approach. Methods: We fabricated several composite of ion-exchange resins with selectively permeable performance designed to facilities water vapor transport and selective adsorption of the harmful gases. With these materials, we characterized on the selectively permeable performance to identify ion-exchange resin with chemical-biological protective cloth. Results: Results showed that ion exchange materials possessed performance with selectively efficiencies as NH3, SOx, NOx and HCl gas. The selective adsorption amount of ammonia and hydrogen gases were $90-80{\mu}g/g$ with TRILITE SCR-BH sulfonated ion exchange resin. The PP non-woven/ion exchange resin adsorbent materials possessed performance with water vapor permeability were 1,100-1,350 g/m2/day, it's was two times high value compare with activated carbon. With these materials, we characterized selectively removal efficiency to identify new ion-exchange material with chemical-biological protective capability. Conclusion: This study shows that a QFD aids in deciding with of the adsorption parameters to optimized with chemical-biological protection cloth manufacturing.

Fabrication and Characteristics of SnO2 Thick Film Devices for Detection of NO2 (NO2 감지용 SnO2 후막소자의 제작 및 특성)

  • Sohn, Jong Rack;Han, Jong Soo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.332-338
    • /
    • 1997
  • $SnO_2$ as raw material of sensor for $NO_2$ detection was prepared by precipitating $SnCl_4$ solution with aqueous ammonia followed by calcining in air. The characterization of $SnO_2$ was carried out using FT-IR and XRD, and $SnO_2$ thick film sensor was fabricated by screen-printing method. The particle size of $SnO_2$ calcined at higher temperature increased due to the growth of crystalline. $SnO_2$ sensor fabricated by using $SnO_2$ sample calcined at $1000^{\circ}C$ followed by heat treatment at $700^{\circ}C$ exhibited excellent sensing characteristics and selectivity for $NO_2$ gas at the operating temperature of $250^{\circ}C$.

  • PDF