• Title/Summary/Keyword: Ambient measurement

Search Result 500, Processing Time 0.028 seconds

Measurement of Junction Temperature in High Power LED Module with Property Analysis of Single Package (단일 패키지의 특성 분석을 통한 고출력 발광 다이오드 모듈의 접합 온도 측정)

  • Lee, Se-IL;Kim, Woo-Young;Jeong, Young-Gi;Yang, Jong-Kyung;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.973-977
    • /
    • 2010
  • The temperature of junction in LED affects the life time and performance. however, the measurement of junction temperature in module is very difficult. In this paper, to measure the junction temperature in LED module, optical and electrical properties is measured in single package in temperature from 25 [$^{\circ}C$] to 85 [$^{\circ}C$], and then junction temperature can is estimated in module with measuring the average voltage of single package. As results, the junction temperature of single package is measured the temperature of 61.2 [$^{\circ}C$] in ambient temperature, also, the junction temperature of LED module is measured the temperature of 72.5 [$^{\circ}C$] in ambient temperature.

Instrumentation and Structural Health Monitoring of Bridges (교량구조물의 헬스모니터 링을 위한 진동계측)

  • 김두기;김종인;김두훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.5
    • /
    • pp.108-122
    • /
    • 2001
  • As bridge design is advancing toward the performance-based design. it becomes increasingly important to monitor and re-evaluate the long-term structural performance of bridges. Such information is essential in developing performance criteria for design. In this research. sensor systems for long-term structural performance monitoring have been installed on two highway bridges. Pre1iminary vibration measurement and data analysis have been performed on these instrumented bridges. On one bridge, ambient vibration data have been collected. based on which natural frequencies and mode shapes have been extracted using various methods and compared with those obtained by the preliminary finite element analysis. On the other bridge, braking and bumping vibration tests have been carried out using a water truck In addition to ambient vibration tests. Natural frequencies and mode shapes have been derived and the results by the breaking and bumping vibration tests have been compared. For the development of a three dimensional baseline finite element model, the new methodology using a neural network is proposed. The proposed one have been verified and applied to develop the baseline model of the bridge.

  • PDF

Assessment of the ATC Effect for Paddy Field and Forest Using Landsat Images and In-situ Measurement (Landsat영상과 현지조사에 의한 여름철 논과 산림의 기온저감효과 평가)

  • Park, Jong-Hwa;Na, Sang-Il;Kim, Jin-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1943-1947
    • /
    • 2007
  • The objective of this research was to find a direct and indirect method to estimate land surface temperature (LST) efficiently, using Landsat images and in-situ measurement. Agricultural fields including paddy fields have long been known to have multi-functions beneficial to the environment and ecology of the urban surrounding areas. Among these functions, the ambient temperature cooling (ATC) effect are widely acknowledged. However, quantitative and regional assessment of such effect has not had many investigations. Thermal remote sensing has been used over urban areas to assess ATC effect, to perform land cover classifications and as input for models of urban surface atmosphere exchange. Here, we review the use of thermal remote sensing in the study of paddy fields and urban climates, focusing primarily on the ATC effect. Landsat satellite images were used to determine the surface temperatures of different land cover types of a $441km^2$ study area in Cheongju, Korea. The results show that the ATC are a function of paddy area percentage in Landsat pixels. Pixels with higher paddy area percentage have more significant cooling effect.

  • PDF

Standardizing GC-FID Measurement of Nonmethane Hydrocarbons in Air for International Intercomparison Using Retention Index and Effective Carbon Number Concept

  • Liaw, Sheng-Ju;Tso, Tai-Ly
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.807-814
    • /
    • 1995
  • Accurate measurements of ozone precursors are required to understand the process and extent of ozone formation in rural and urban areas. Nonmethane hydrocarbons (NMHCs) have been identified as important ozone precursors. Identification and quantification of NMHCs are difficult because of the large number present and the wide molecular weight range encountered in typical air samples. A major plan of the research team of the Climate and Air Quality Taiwan Station (CATs) was the measurement of atmospheric nonmethane hydrocarbons. An analytical method has been development for the analysis of the individual nonmethane hydrocarbons in ambient air at ppb (v) and subppb(v) levels. The whole ambient air samples were collected in canisters and analyzed by GC-FID with $Al_2O_3$/KCl PLOT column. Our targeted for quantitative analysis 43 compounds that may be substantial contributors to ozone formation. The retention indices and molar response factors of some commercially available $C_2{\sim}C_{10}$ hydrocarbons were determined and used to identify and quantify air samples. A quality assurance program was instituted to ensure that good measurements were made by participating in the International Nonmethane Hydrocarbon Intercomparison Experiments (NOMHICE).

  • PDF

Derivation of the Ambient Nitrogen Dioxide Mixing Ratio over a Traffic Road Site Based on Simultaneous Measurements Using a Ground-based UV Scanning Spectrograph

  • Lee, Han-Lim;Noh, Young-Min;Ryu, Jae-Yong;Hwang, Jung-Bae;Won, Yong-Gwan
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.96-102
    • /
    • 2011
  • Simultaneous measurements using a scanning spectrograph system and transmissometer were performed for the first time over an urban site in Gwangju, Korea, to derive the ambient $NO_2$ volume mixing ratio. The differential slant column densities retrieved from the scanning spectrograph system were converted to volume mixing ratios using the light traveling distance along the scanning line of sight derived from the transmissometer light extinction coefficients. To assess the performance of this system, we compared the derived $NO_2$ volume mixing ratios with those measured by an in situ chemiluminescence monitor under various atmospheric conditions. For a cloudless atmosphere, the linear correlation coefficient (R) between the two data sets (i.e., data derived from the scanning spectrograph and from the in situ monitor) was 0.81; the value for a cloudy atmosphere was 0.69. The two sets of $NO_2$ volume mixing ratios were also compared for various wind speeds. We also consider the measurement errors, as estimated from an error propagation analysis.

Development of Drying Systems for Accurate Measurement of Particulate Matter by means of Optical Particle Measuring Instruments (광산란 계측기의 미세먼지 측정 정확도 향상을 위한 수분제거 전처리 기술 개발)

  • Kang, Doo Soo;Oh, Jung Eun;Lee, Sang Yul;Shin, Hee Joon;Bong, Ha Kyung;Choi, Joohyun;Kim, Dae Seong
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.191-203
    • /
    • 2018
  • IIn this study, we have developed drying systems for reducing the error by humidity on measuring particulate matter (PM) in the ambient air with optical particle measuring instruments. Two types of drying systems were designed: drying systems using heating and dilution methods. In addition, 3 types of drying systems using a heating method were designed: Type A (1 hole), B (3 holes) and C (7 holes). After making them, the laboratory and field tests were carried out to evaluate the developed drying systems. As a result, it was shown that the PM concentrations obtained by PM monitoring devices with drying systems agree well with that of the reference devices. Therefore, it could be concluded that the drying systems can be applied to PM monitoring devices for real-time monitoring of the ambient aerosols.

Measurement of Spatial Coherence of Active Acoustic Sensor Array Signal (능동 음향센서 배열신호의 공간 상관성 측정)

  • Park, Joung-Soo;Kim, Hyoung-Rok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.205-213
    • /
    • 2012
  • Active acoustic array signal was measured in the East Sea and the South sea and spatial coherence was analyzed. The measurement of ambient noise, target reflection signal, sea surface backscattering signals took place including environmental measurements of sea wind, and vertical temperature profiles. The spatial coherence of ambient noise was lower than that of target reflection signal in the South Sea. The spatial coherence of target reflection signal was above 0.5 over all array length. The spatial coherence of sea surface backscattering signal was higher in high incident angle. The maximum non-dimensional array length was 3.0 ($26^{\circ}$) and 3.5 ($32^{\circ}$) to have spatial coherence above 0.5 in the East Sea. To find a design criteria for array configuration and array performance, more measurements of temporal and spatial coherence will be needed continuously in the future.

A Study on Acute Effects of Ambient Air Particles on Pulmonary Function of Schoolchildren in Ulsan

  • Yu, Seung-Do;Kim, Dae-Seon;Cha, Jung-Hoon;Ahn, Seung-Chul;Lee, Jong-Tae
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.183-186
    • /
    • 2003
  • To evaluate the effect of air pollution on respiratory health in children, we conducted a longitudinal study in which children were asked to record their daily levels of peak expiratory flow rate using potable peak flow meter (mini-Wright) far 4 weeks. The relationship between daily PEFR and ambient air particle levels was analyzed using a mixed linear regression models including gender, age in you, weight, the presence of respiratory symptoms, and relative humidity as an extraneous variable. The daily mean concentrations of PM$\_$10/ and PM$\_$2.5/ over the study period were 64.9$\mu\textrm{g}$/㎥ and 46. l$\mu\textrm{g}$/㎥, respectively. The range of daily measured PEFR in this study was 170-481 l/min. Daily mean PEFR was regressed with the 24-hour. average PM$\_$10/ (or PM$\_$2.5/) levels, weather information such as air temperature and relative humidity, and individual characteristics including sex, weight, and respiratory symptoms. The analysis showed that the increase of air particle concentrations was negatively associated with the variability in PEFR. We estimated that the IQR increment of PM$\_$10/ or PM$\_$2.5/ were associated with 1.5 l/min (95% Confidence intervals -3.1, 0.1) and 0.8 l/min (95% Cl -1.8, 0.1) decline in PEFR. Even though this study shows negative findings on the relationship between respiratory function and air particles, it is worth noting that the findings must be interpreted cautiously because exposure measurement based on monitoring of ambient air likely results in misclassification of true exposure levels and this is the first Korean study that PM$\_$2.5/ measurement is applied as an index of air particle quality.

  • PDF

Design of Precision Position Measuring System using Laser Interferometry (광간섭법을 이용한 정밀 위치측정 시스템 설계)

  • 김진상;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.145-149
    • /
    • 1997
  • A laser mesurement system, a modified Michelson interferometer,which can accurately measure high speed length and position of servomechanisms by detecting a phase shift in the measurement beam using an optical interference was developed. A frequency stabilized laser source and a 20 fold frequency interpolation and digitizing circuit were applied to the system. The refractive index of the ambient air was calibrated through the Edlen's formula. The system achieved a resolution of .lambda./40,16nm, a maximum allowable measurement speed of 600 mm/sec, and a length measurement range of 1500mm. Performance of the system was evaluated on the machining center in short and long length measurements

  • PDF

Development of Effective Measurement System for Micro Burrs (효율적인 마이크로 버 측정 시스템 개발)

  • Ko Sung-Lim;To Hoang-Minh
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.702-705
    • /
    • 2005
  • Burr is an undesirable projection as result of plastic deformation. Burr minimization and effective deburring process are required strongly to reduce the cost of the parts. In doing these efforts, the precise burr measurement must be provided for the efficient process. For this purpose the conoscopic holography sensors are selected before. However, it has been very difficult to measure micro burrs less than $10{\mu}m$ due to their tiny and sharp geometries as well as the effect of ambient vibration during scanning. A new micro burr measurement system using high precision. Conoprobe sensor and XY table can measure the micro burrs which is less than $10{\mu}m$. Experiments were carried out showing that micro burr around $10{\mu}m$ was successfully measured and analyzed.

  • PDF