• Title/Summary/Keyword: Ambient light sensor

Search Result 50, Processing Time 0.027 seconds

Speculation of Optical Cavity for Improving Optical Gas Sensor's Characteristics (광학적 가스센서 특성 향상을 위한 광 공동 구조의 고찰)

  • Yi, Seung-Hwan;Park, Jong-Seon
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.63-68
    • /
    • 2008
  • This paper describes about the simulation and the experimental results of optical cavity with curved mirror surface and vertical mirror surface to improve the light intensity and efficiency of the optical sensors. When we use the vertical mirror surface, the distribution of light reached to the filter surface of detector shows an elliptical shape. Whereas, the curved mirror surface focuses the light into circular shape. Therefore, due to focusing effects in case of using curved mirror surface, the light intensity per unit area has been improved. Consequently, the output voltage of gas sensor has been expected to increase. Based upon the simulation, the experiment of gas sensor has been conducted with $CO_2$ gas from 0ppm to 2,500 ppm at 250 ppm step and $25^{\circ}C$, 45%R.H. ambient. The output voltage of gas sensor that has a curved mirror surface increases approximately 200 mV than that of vertical mirror surface.

  • PDF

An Automatic Back-Light Brightness Control System of Mobile Display Using Built-In Photo Sensor (내장형 광센서를 이용한 모바일 디스플레이의 자동 광원 밝기 조정 시스템)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.713-716
    • /
    • 2008
  • This paper presents an automatic back-light brightness control system for mobile displays. One of the most important factors in mobile display is the power consumption due to the limited and movable power source. More than 80% of power of the LCD display is consumed by LED bark-light unit (BLU). The target brightness also becomes higher because of its moving picture and high resolution image, so there are some side effects for not only excessive power consumption but also ergonomic inconvenience in dark environment. To prevent this discomfort and reduce power consumption, this paper proposes automatic brightness control (ABC) technique in mobile displays. Developed system contains TFT-LCD panel with built-in photo sensor, driver IC capable of controlling photo sensor, and BLU. Since the photo sensor array built in panel detects automatically outdoor ambient light intensity, the power of BLU in dark environment is reduced. Developed ABC system showed reduced power consumption of 50% in dark environment. We believe that the proposed system is very useful to control power of mobile TFT-LCD.

  • PDF

Color Temperature Measurement and Classification of Ambient Light Sources Using two Color Sensors, Yellow and Cyan (옐로우와 사이안 두 광센서를 사용한 주위 조명광의 색온도 측정 및 분류)

  • Choi, Duk-Kyu;Kwon, Yong-Dae;Kwon, Ki-Ryong;Sohng, Kyu-Ik
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.409-417
    • /
    • 1998
  • Originally, the reference white of the NTSC system used to be CIE illuminant C of 6774K. However, that of color television receiver has been adjusted to 9300K as a result of consumer preference for a very bluish white for monochrome television. Recent studies have revealed that the preferred color temperature of display white should be 3000K or 4000K higher than that of surround illuminant. Therefore it is required to classify ambient lighting source. In this paper, a efficient method that can distinguish the ambient incandescent lamp from fluorescent lamp under television viewing condition is developed using only two color sensors, yellow and cyan. Experimental results show that the proposed method is very useful for the discrimination of ambient lighting source, fluorescent of 6000K and incandescent lamp of 3000K. The system was also tested for mixture of these light sources.

  • PDF

3D Environment Perception using Stereo Infrared Light Sources and a Camera (스테레오 적외선 조명 및 단일카메라를 이용한 3차원 환경인지)

  • Lee, Soo-Yong;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.519-524
    • /
    • 2009
  • This paper describes a new sensor system for 3D environment perception using stereo structured infrared light sources and a camera. Environment and obstacle sensing is the key issue for mobile robot localization and navigation. Laser scanners and infrared scanners cover $180^{\circ}$ and are accurate but too expensive. Those sensors use rotating light beams so that the range measurements are constrained on a plane. 3D measurements are much more useful in many ways for obstacle detection, map building and localization. Stereo vision is very common way of getting the depth information of 3D environment. However, it requires that the correspondence should be clearly identified and it also heavily depends on the light condition of the environment. Instead of using stereo camera, monocular camera and two projected infrared light sources are used in order to reduce the effects of the ambient light while getting 3D depth map. Modeling of the projected light pattern enabled precise estimation of the range. Two successive captures of the image with left and right infrared light projection provide several benefits, which include wider area of depth measurement, higher spatial resolution and the visibility perception.

Optical issues of OLED displays with a photo sensor for in-pixel optical feedback

  • Oepts, Wouter;Giraldo, Andrea;Lifka, Herbert;Fish, David;Young, Nigel
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.968-971
    • /
    • 2005
  • Amorphous silicon photo diodes incorporated in a polyLED stack are applied in in pixel opticalfeedback to compensate for polyLED degradation. Large quantum efficiencies and perfect linearity are demonstrated. The photosensitivity is in agreement with optical modeling of the stack. A new scheme for ambient and cross talk light cancellation is given.

  • PDF

3D Range Measurement using Infrared Light and a Camera (적외선 조명 및 단일카메라를 이용한 입체거리 센서의 개발)

  • Kim, In-Cheol;Lee, Soo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1005-1013
    • /
    • 2008
  • This paper describes a new sensor system for 3D range measurement using the structured infrared light. Environment and obstacle sensing is the key issue for mobile robot localization and navigation. Laser scanners and infrared scanners cover $180^{\circ}$ and are accurate but too expensive. Those sensors use rotating light beams so that the range measurements are constrained on a plane. 3D measurements are much more useful in many ways for obstacle detection, map building and localization. Stereo vision is very common way of getting the depth information of 3D environment. However, it requires that the correspondence should be clearly identified and it also heavily depends on the light condition of the environment. Instead of using stereo camera, monocular camera and the projected infrared light are used in order to reduce the effects of the ambient light while getting 3D depth map. Modeling of the projected light pattern enabled precise estimation of the range. Identification of the cells from the pattern is the key issue in the proposed method. Several methods of correctly identifying the cells are discussed and verified with experiments.

Walking Assistance Device for Prevention of Accidents of Visually Impaired People (시각장애인의 사고예방을 위한 다기능 보행 보조 장치)

  • Sim, Jae-Man;Lee, Hyeong-Wook;Shin, Joo-Yong;Kim, Ki-Won;Han, Young-Oh
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1241-1248
    • /
    • 2019
  • In this paper, an auxiliary device was implemented to help blind people more safely from obstacles or risk factors while walking. The ultrasonic sensors detect obstacles in the front, so that the noise gap and the vibration intensity of the buzzer can be heard differently by distance and angle, and so the situation can be perceived by pedestrians. When the ambient light becomes darker than the light intensity set using the CdS resistance value of the light sensor, the LED automatically turns on, makes it easier for pedestrians to recognize the position of the auxiliary device through buzzer if the pedestrian misses the aid using the gyro sensor's slope. Moreover, the location and situation of the blind were transmitted to the caregiver to check safety and behavior using GPS and Bluetooth.

Operation of battery-less and wireless sensor using magnetic resonance based wireless power transfer through concrete

  • Kim, Ji-Min;Han, Minseok;Lim, Hyung Jin;Yang, Suyoung;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.631-646
    • /
    • 2016
  • Although the deployment of wireless sensors for structural sensing and monitoring is becoming popular, supplying power to these sensors remains as a daunting task. To address this issue, there have been large volume of ongoing energy harvesting studies that aimed to find a way to scavenge energy from surrounding ambient energy sources such as vibration, light and heat. In this study, a magnetic resonance based wireless power transfer (MR-WPT) system is proposed so that sensors inside a concrete structure can be wirelessly powered by an external power source. MR-WPT system offers need-based active power transfer using an external power source, and allows wireless power transfer through 300-mm thick reinforced concrete with 21.34% and 17.29% transfer efficiency at distances of 450 mm and 500 mm, respectively. Because enough power to operate a typical wireless sensor can be instantaneously transferred using the proposed MR-WPT system, no additional energy storage devices such as rechargeable batteries or supercapacitors are required inside the wireless sensor, extending the expected life-span of the sensor.

Illuminant-adaptive color reproduction for a mobile display (주변광원에 적응적인 모바일 디스플레이에서의 색 재현)

  • Kim, Jong-Man;Son, Chang-Hwan;Cho, Sung-Dae;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.63-73
    • /
    • 2007
  • This paper proposes an illuminant-adaptive reproduction method using light adaptation and flare conditions for a mobile display. Displayed images in daylight are perceived as quite dark due to the light adaptation of the human visual system, as the luminance of a mobile display is considerably lower than that of an outdoor environment. In addition, flare phenomena decrease the color gamut of a mobile display and de-saturating the chroma. Therefore, this paper presents an enhancement method composed of lightness enhancement and chroma compensation. First, the ambient light intensity is measured using a lux-sensor, then the flare is calculated based on the reflection ratio of the display device and the ambient light intensity. To improve the perceived image, the image's luminance is transformed by linearization of the response to the input luminance according to the ambient light intensity. Next, the displayed image is compensated according to the physically reduced chroma, resulting from flare phenomena. This study presents a color reproduction method based on an inverse cone response curve and flare condition. Consequently, the proposed algorithm improves the quality of the perceived image adaptive to an outdoor environment.

Ambient Fine and Ultrafine Particle Measurements and Their Correlations with Particulate PAHs at an Elementary School Near a Highway

  • Song, Sang-Hwan;Paek, Do-Myung;Lee, Young-Mee;Lee, Chul-Woo;Park, Chung-Hee;Yu, Seung-Do
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.96-103
    • /
    • 2012
  • Ambient particulate matter (PM) and particle-bound polycyclic aromatic hydrocarbon (PAH) concentrations were measured continuously for 70 days at a Korean elementary school located near a highway. The $PM_{10}$, $PM_{2.5}$, and $PM_1$ values were measured with a light-scattering, multi-channel, aerosol spectrometer (Grimm, Model 1.107). The number concentrations of the particles were measured using a scanning mobility particle sizer and counter (SMPS+C) which counted particles from 11.1 to 1083.3 nm classified in 44 channels. Particle-bound PAHs were measured with a direct reading, photoelectric aerosol sensor. The daily $NO_2$, $SO_2$, and CO concentrations were obtained from a national air-monitoring station located near the school. The average concentrations of $PM_{10}$, $PM_{2.5}$, and $PM_1$ were 75.3, 59.3, and $52.1{\mu}g/m^3$, respectively. The average number concentration of the ultrafine particles (UFPs) was $46,307/cm^3$, and the averaged particle-bound PAHs concentration was $17.9ng/cm^3$ during the study period. The ambient UFP variation was strongly associated with traffic intensity, particularly peak concentrations during the traffic rush hours. Particles <100 nm corresponded to traffic-related pollutants, including PAHs. Additional longterm monitoring of ambient UFPs and high-resolution traffic measurements should be carried out in future studies. In addition, transient variations in the ambient particle concentration should be taken into consideration in epidemiology studies in order to examine the short-term health effects of urban UFPs.