• Title/Summary/Keyword: Ambient light

Search Result 362, Processing Time 0.03 seconds

Ray Tracing Method Based on Spectral Distribution for Reproducing a Realistic Image (실사영상 재현을 위한 분광분포 기반의 광선추적기법)

  • Lee Myong-Young;Lee Cheol-Hee;Lee Ho-Keun;Ha Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.1
    • /
    • pp.37-46
    • /
    • 2004
  • In this paper, we propose an improved reproduction algorithm for a realistic image of the real scene based on the spectral distribution of lights and objects. The proposed method for the realistic image is focused on a more accurate reproduction of an image incident on the sight of the viewer. At first, to reproduce an image accurately incident on a sight of viewer, we used the backward ray tracing method based on spectral distribution of object and illuminant representing its physical characteristic used in real. Next, we propose utilizing the improved shading model of the reproduction algorithm of realistic image by applying Bouguer-Beer's law to consider an optical absorptive property of transparent objects. We also define a new ambient light term which is considered the diffuse reflection of neighboring objects instead of constant ambient light. The simulation results show that the proposed algorithm can reproduce the visually similar image with a scene incident on a sight of viewer.

Development and Properties of Carbon monoxide Detector for Ambient Air monitoring (대기오염 측정용 일신화 탄소 검출기의 제작 및 특성)

  • Cho, Kyung-Haeng;Lee, Sang-Wha;Lee, Joung-Hae;Choi, Kyong-Sik
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.222-228
    • /
    • 2000
  • A detector for monitoring carbon monoxide (CO) in ambient air by nondispersive infrared (NDIR) spectroscopy has been developed and investigated its sensitivity and stability. The essential parts of the absorption cell are three spherical concave mirrors so as to improve the sensitivity by increasing the light path length in the cell. The radius and center of curvature of mirrors and position in the cell was calculated by computer simulation in order that the light path length may be 16m into the 50cm cell. The number of traversals and optical path properties were confirmed by laser beam alignment in transparent absorption cell. The photoconductive type lead selenide (PbSe) was used as CO sensing material, which was cooled to increase the responsibility by thermoelectric cooling method. The detection limit and span drift of the developed CO detector was 0.24ppm and 0.03ppm(v/v) respectively.

  • PDF

Real Time Linux System Design (리얼 타임 리눅스 시스템 설계)

  • Lee, Ah Ri;Hong, Seon Hack
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.2
    • /
    • pp.13-20
    • /
    • 2014
  • In this paper, we implemented the object scanning with nxtOSEK which is an open source platform. nxtOSEK consists of device driver of leJOS NXJ C/Assembly source code, TOPPERS/ATK(Automotive real time Kernel) and TOPPERS/JSP Real-Time Operating System source code that includes ARM7 specific porting part, and glue code make them work together. nxtOSEK can provide ANSI C by using GCC tool chain and C API and apply for real-time multi tasking features. We experimented the 3D scanning with ultra sonic and laser sensor which are made directly by laser module diode and experimented the measurement of scanning the object by knowing x, y, and z coordinates for every points that it scans. In this paper, the laser module is the dimension of $6{\times}10[mm]$ requiring 5volts/5[mW], and used the laser light of wavelength in the 650[nm] range. For detecting the object, we used the beacon detection algorithm and as the laser light swept the objects, the photodiode monitored the ambient light at interval of 10[ms] which is called a real time. We communicated the 3D scanning platform via bluetooth protocol with host platform and the results are displayed via DPlot graphic tool. And therefore we enhanced the functionality of the 3D scanner for identifying the image scanning with laser sensor modules compared to ultra sonic sensor.

The analysis of temperature and light intensity characteristics of PV modules with solar cell type (Cell-Type에 따른 PV모듈의 일사강도와 온도 특성 비교)

  • Bae, Jong-Guk;Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1316-1317
    • /
    • 2011
  • This paper presents analysis of temperature and light intensity characteristics of PV modules with solar cell type. Taking the effect of sunlight irradiance on the cell temperature, the first experiment takes ambient temperature as reference input and uses the solar insolation as a unique varying parameter. Then taking the effect of the cell temperature on sunlight irradiance, the second experiment takes 1000W/$m^2$ as reference input and uses the cell temperature as a unique varying parameter. As a result, varying sunlight irradiance, the Cell-Type with the smallest change in output is HIT and the Cell-Type with the biggest change in output is a-Si. Varying the cell temperature, the Cell-Type with the smallest change in output is a-Si and the Cell-Type with the biggest change in output is Single-Si. And considering both temperature and light intensity characteristics, the Cell-Type with the smallest change in output is HIT.

  • PDF

Monochromatic Image Analysis of Elastohydrodynamic Lubrication Film Thickness by Fringe Intensity Computation

  • Jang, Siyoul
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1704-1713
    • /
    • 2003
  • Point contact film thickness in elastohydrodynamic lubrication (EHL) is analyzed by image processing method for the images from an optical interferometer with monochromatic incident light. Interference between the reflected lights both on half mirror Cr coating of glass disk and on super finished ball makes circular fringes depending on the contact conditions such as sliding velocity, applied load, viscosity-pressure characteristics and viscosity of lubricant under ambient pressure. In this situation the film thickness is regarded as the difference of optical paths between those reflected lights, which make dark and bright fringes with monochromatic incident light. The film thickness is computed by numbering the dark and bright fringe orders and the intensity (gray scale image) in each fringe regime is mapped to the corresponding film thickness. In this work, we developed a measuring technique for EHL film thickness by dividing the image patterns into two typical types under the condition of monochromatic incident light. During the image processing, the captured image is converted into digitally formatted data over the contact area without any loss of the image information of interferogram and it is also interpreted with consistency regardless of the observer's experimental experience. It is expected that the developed image processing method will provide a valuable basis to develop the image processing technique for color fringes, which is generally used for the measurement of relatively thin films in higher resolution.

Indium Tin Oxide-Free Large-Area Flexible Organic Light-Emitting Diodes Utilizing Highly Conductive poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) Anode Fabricated by the Knife Coating Method (나이프 코팅 법으로 제작한 ITO-Free 고전도성 PEDOT:PSS 양극 대면적 유연 OLED 소자 제작에 관한 연구)

  • Seok, JaeYoung;Lee, Jaehak;Yang, MinYang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • This paper reports solution-processed, high-efficiency organic light-emitting diodes (OLEDs) fabricated by a knife coating method under ambient air conditions. In addition, indium tin oxide (ITO), traditionally used as the anode, was substituted by optimizing the conductivity enhancement treatment of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films on a polyethylene terephthalate (PET) substrate. The transmittance and sheet resistance of the optimized PEDOT:PSS anode were 83.4% and $27.8{\Omega}/sq$., respectively. The root mean square surface roughness of the PEDOT:PSS anode, measured by atomic force microscopy, was only 2.95 nm. The optimized OLED device showed a maximum current efficiency and maximum luminous density of 5.44 cd/A and $8,356cd/m^2$, respectively. As a result, the OLEDs created using the PEDOT:PSS anode possessed highly comparable characteristics to those created using ITO anodes.

Raman spectroscopy study on the reactions of UV-generated oxygen atoms with single-layer graphene on SiO2/Si substrates

  • Ahn, Gwang-Hyun;Kim, Hye-Ri;Hong, Byung-Hee;Ryu, Sun-Min
    • Carbon letters
    • /
    • v.13 no.1
    • /
    • pp.34-38
    • /
    • 2012
  • Successful application of graphene requires development of various tools for its chemical modification. In this paper, we present a Raman spectroscopic investigation of the effects of UV light on single layer graphene with and without the presence of $O_2$ molecules. The UV emission from a low pressure Hg lamp photolyzes $O_2$ molecules into O atoms, which are known to form epoxy on the basal plane of graphene. The resulting surface epoxy groups were identified by the disorder-related Raman D band. It was also found that adhesive residues present in the graphene samples prepared by micro-mechanical exfoliation using adhesive tape severely interfere with the O atom reaction with graphene. The UV-induced reaction was also successfully applied to chemical vapor deposition-grown graphene. Since the current method can be readily carried out in ambient air only with UV light, it will be useful in modifying the surfaces of graphene and related materials.

Optimum configuration of a reflective LC cell with a diffractive nano-reflector

  • Park, Kyung-Ho;Lee, Gak-Seok;Kim, Jae-Chang;Yoon, Tae-Hoon;Kim, Jin-Hwan;Yu, Jae-Ho;Choi, Hwan-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.614-615
    • /
    • 2009
  • For the high reflectance under the ambient light condition, a highly efficient diffractive reflector has been proposed, based on a micro grating structure.[1] This reflector was designed to show highly concentrated distribution of the reflected light to the normal direction of the reflector under specific incident conditions of the light. In order to apply a diffractive reflector to a reflective liquid crystal display, the coupling between the viewing angle characteristics of a liquid crystal (LC) cell and the reflective distribution of the reflector should be considered. Under the optimum configuration confirmed through the analysis of the coupling between a LC cell and a reflector, a reflective vertical alignment (VA) cell with a diffractive reflector shows contrast ratio and brightness much higher than that with a conventional bumpy reflector.

  • PDF

Built-in voltage depending on $Li_2O$ layer thickness in organic light-emitting diodes from the measurement of modulated photocurrent (변조 광전류 측정법을 이용하여 유기 발광 소자에서 $Li_2O$ 두께 변화에 따른 내장 전압)

  • Lee, Eun-Hye;Yoon, Hee-Myoung;Kim, Tae-Wan;Min, Hang-Gi;Jang, Kyung-Uk;Chung, Dong-Hoe;Oh, Yong-Cheul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.31-32
    • /
    • 2007
  • Built-in voltage in organic light-emitting diodes was studied using modulated photocurrent technique ambient conditions. A device was made with a structure of anode/$Alq_3$/cathode to study a built-in voltage. An ITO was used as an anode, and $Li_2O$/Al was used as a cathode. From the bias voltage-dependent photocurrent, built-in voltage of the device is determined. The applied bias voltage when the magnitude of modulated photocurrent is zero corresponds to a built-in voltage. Built-in voltage in the device is generated due to a difference of work function of the anode and cathode. It was found that for 0.5nm thick $Li_2O$ layer built-in voltage is the higher than the others. It indicates that a very thin alkaline metal compound $Li_2O$ lowers an electron barrier height.

  • PDF

Thermally reused solar energy harvesting using current mirror cells

  • Mostafa Noohi;Ali Mirvakili;Hadi Safdarkhani;Sayed Alireza Sadrossadat
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.519-533
    • /
    • 2023
  • This paper implements a simultaneous solar and thermal energy harvesting system, as a hybrid energy harvesting (HEH) system, to convert ambient light into electrical energy through photovoltaic (PV) cells and heat absorbed in the body of PV cells. Indeed, a solar panel equipped with serially connected thermoelectric generators not only converts the incoming light into electricity but also takes advantage of heat emanating from the light. In a conventional HEH system, the diode block is used to provide the path for the input source with the highest value. In this scheme, at each time, only one source can be handled to generate its output, while other sources are blocked. To handle this challenge of combining resources in HEH systems, this paper proposes a method for collecting all incoming energies and conveying its summation to the load via the current mirror cells in an approach similar to the maximum power point tracking. This technique is implemented using off-the-shelf components. The measurement results show that the proposed method is a realistic approach for supplying electrical energy to wireless sensor nodes and low-power electronics.