• 제목/요약/키워드: Ambient Intelligence

검색결과 32건 처리시간 0.035초

3차원 입체영상 센싱, 이미징 및 디스플레이를 위한 집적영상 및 디지털 홀로그래피 기술 (Integral Imaging and Digital Holography Techniques for Three-dimensional Sensing, Imaging and Display (Invited Paper))

  • 김승철;신동학;김은수
    • 한국광학회지
    • /
    • 제25권4호
    • /
    • pp.169-192
    • /
    • 2014
  • 본 논문에서는 기존 스테레오 3D 방식의 문제를 해결할 수 있는 집적영상 및 디지털 홀로그래피 방식을 포함하는 공간영상방식의 3차원 영상기술에 대해 소개하고 최근의 국내외 연구개발 동향에 대해 알아본다. 또한 이를 기반으로 향후 연구개발 방향을 전망한다.

A Creative Solution of Distributed Modular Systems for Building Ubiquitous Heterogeneous Robotic Applications

  • Ngo Trung Dung;Lund Henrik Hautop
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.410-415
    • /
    • 2004
  • Employing knowledge of adaptive possibilities of agents in multi-agents system, we have explored new aspects of distributed modular systems for building ubiquitous heterogeneous robotic systems using intelligent building blocks (I-BLOCKS) [1] as reconfigurable modules. This paper describes early technological approaches related to technical design, experimental developments and evaluation of adaptive processing and information interaction among I-BLOCKS allowing users to easily develop modular robotic systems. The processing technology presented in this paper is embedded inside each $DUPLO^1$ brick by microprocessor as well as selected sensors and actuators in addition. Behaviors of an I-BLOCKS modular structure are defined by the internal processing functionality of each I-Block in such structure and communication capacities between I-BLOCKS. Users of the I-BLOCKS system can easily do 'programming by building' and thereby create specific functionalities of a modular robotic structure of intelligent artefacts without the need to learn and use traditional programming language. From investigating different effects of modern artificial intelligence, I-BLOCKS we have developed might possibly contain potential possibilities for developing modular robotic system with different types of morphology, functionality and behavior. To assess these potential I-BLOCKS possibilities, the paper presents a limited range of different experimental scenarios in which I-BLOCKS have been used to set-up reconfigurable modular robots. The paper also reports briefly about earlier experiments of I-BLOCKS created on users' natural inspiration by a just defined concept of modular artefacts.

  • PDF

CNN(Convolutional Neural Network) 알고리즘을 활용한 음성신호 중 비음성 구간 탐지 모델 연구 (A Study on a Non-Voice Section Detection Model among Speech Signals using CNN Algorithm)

  • 이후영
    • 융합정보논문지
    • /
    • 제11권6호
    • /
    • pp.33-39
    • /
    • 2021
  • 음성인식 기술은 딥러닝과 결합되며 빠른 속도로 발전하고 있다. 특히 음성인식 서비스가 인공지능 스피커, 차량용 음성인식, 스마트폰 등의 각종 기기와 연결되며 음성인식 기술이 산업의 특정 분야가 아닌 다양한 곳에 활용되고 있다. 이러한 상황에서 해당 기술에 대한 높은 기대 수준을 맞추기 위한 연구 역시 활발히 진행되고 있다. 그중에서 자연어처리(NLP, Natural Language Processing)분야에서 음성인식 인식률에 많은 영향을 주는 주변의 소음이나 불필요한 음성신호를 제거하는 분야에 연구가 필요한 상황이다. 이미 많은 국내외 기업에서 이러한 연구를 위해 최신의 인공지능 기술을 활용하고 있다. 그중에서 합성곱신경망 알고리즘(CNN)을 활용한 연구가 활발하게 진행되고 있다. 본 연구의 목적은 합성곱 신경망을 통해서 사용자의 발화구간에서 비음성 구간을 판별하는 것으로 5명의 발화자의 음성파일(wav)을 수집하여 학습용 데이터를 생성하고 이를 합성곱신경망을 활용하여 음성 구간과 비음성 구간을 판별하는 분류 모델을 생성하였다. 이후 생성된 모델을 통해 비음성 구간을 탐지하는 실험을 진행한 결과 94%의 정확도를 얻었다.

광자 계수 집적 영상 현미경을 사용한 마이크로 물체의 3차원 시각화와 인식 (Three-Dimensional Visualization and Recognition of Micro-objects using Photon Counting Integral Imaging Microscopy)

  • 조명진;조기옥;신동학
    • 한국정보통신학회논문지
    • /
    • 제19권5호
    • /
    • pp.1207-1212
    • /
    • 2015
  • 본 논문에서는 광자 계수 집적 영상 현미경을 사용하여 광자가 희박한 조건에서 마이크로 물체의 3차원 시각화와 인식에 대한 기술을 제안한다. 제안하는 방법에서는 고해상도의 서로 다른 원근감을 가지는 2차원 영상을 획득하기 위해 합성조리개 집적 영상을 사용한다. 그리고 영상으로부터 광자를 추출하기 위해 광자계수 영상 시스템의 수학적 모델인 포아송 분포를 사용하며 통계적 추정법으로 부터 3차원 영상을 추정한다. 따라서, 광자가 희박한 조건에서 마이크로 물체가 손상되지 않으면서 그에 대한 3차원 영상을 획득하고 시각화할 수 있다. 추가적으로, 비선형 상관 필터를 사용하여 3차원 물체의 인식도 가능하다. 본 기술의 유용성을 증명하기 위해, 광학적 실험을 수행하였다.

다중 패치를 이용한 예제 기반 영상 인페인팅 (Exemplar-based Image Inpainting Using Multiple Patches)

  • 박찬우;이상현;박기태;문영식
    • 전자공학회논문지CI
    • /
    • 제48권1호
    • /
    • pp.8-16
    • /
    • 2011
  • 영상 인페인팅(Image Inpainting)은 영상에서 손상된 영역을 제거하고 제거한 영역을 주변 영역과 유사하게 채워 넣어 자연스럽게 만E는 영상 복원의 한 기법이다. 그러나 제거할 영액이 클 경우, 복원한 결과의 구조가 자연스럽지 않아 원하지 않는 영상을 획득할 수 있는 문제가 발생한다. 본 논문에서는 화소 값 차이뿐만 아니라 거리 정보를 고려한 다중 패치들을 사용하는 향상된 예제 기반 영상 인페인팅 기법을 제안한다. 일반적인 예제 기반 영상 인페인팅 기법에서는 패치를 잘못 선택함으로써 블록 현상 같은 부자연스러운 결과들이 발생할 수 있다. 이런 문제점을 개선하기 위해 채워질 패치와 원본 영역에서의 패치들 간의 공간상 거리와 화소 값 차이를 둘 다 고려하여 여러 후보 패치들을 선택하고 선택된 패치들의 가중치를 적용하여 새로운 구조와 질감 정보를 생성하는 것을 제안한다. 실험 결과를 통해 제안하는 방법을 이용한 결과가 기존의 방법을 이용한 결과보다 구조와 질감 정보가 보다 향상된 결과를 보여준다.

렌즈분할 기반의 시간다중화 3D 집적영상 디스플레이를 위한 컴퓨터적인 요소영상 생성방법 (Computational generation method of elemental images for time-multiplexed 3D integral imaging display based on lens division)

  • 오용석;신동학;정신일
    • 한국정보통신학회논문지
    • /
    • 제18권10호
    • /
    • pp.2571-2578
    • /
    • 2014
  • 본 논문에서는 렌즈분할 기반의 시간다중화 3D 집적영상 디스플레이를 위한 컴퓨터적인 요소영상 생성 방법을 제안한다. 제안하는 방법에 대하여 3차원 물체와 요소영상 사이의 기하광학적인 결상관계를 해석하고, 이 결상관계를 통하여 시간다중화 방식의 요소영상들을 생성한다. 요소영상 생성할 때, 제안하는 방법에서는 픽업되는 물체점의 위치가 기존 방식의 위치보다 절반의 분할렌즈 크기만큼 이동된다. 제안한 방법에 대한 기초적인 실험을 수행하고 그 결과를 보고한다.

언택트 환경에서의 스마트 인터랙션 공간 모델 연구 (A Study on the Interaction Smart Space Model in the Untact Environment)

  • 윤창옥;이병춘;권경수
    • 한국융합학회논문지
    • /
    • 제12권1호
    • /
    • pp.89-97
    • /
    • 2021
  • 최근 언택트(Untact) 시대에 강제적인 실내 생활의 중요성이 높아지면서 공간 환경들의 연계성과 관계성이 높아졌다. 즉, 다양한 공간에서의 서비스 제공을 위한 스마트 인터랙션 환경은 다양한 센서들을 통해 주변 정보를 수집 가공하여 필요한 장소와 시간에 맞게 사용자에게 정보들을 제공한다. 이러한 환경에서 사용자가 정보에 대한 선택과 집중을 위한 새로운 형태의 인터랙션 패러다임이 필요하다. 본 논문에서는 다양한 인터랙션 환경을 중심으로 인터랙션 공간 설계를 위한 패턴들에 대해서 연구한다. 즉, 인터랙션 모델기반의 기술을 통해 공간 중심으로 인터랙션 설계를 위한 가이드라인을 제공한다. 또한 다양한 사례를 기반으로 패턴과 템플릿 연구를 통해 이상적인 인터랙션 환경을 제안한다. 이를 통해 스마트 인터랙션 환경에 적합한 공간 중심 인터랙션 모델을 제공함으로써 사용자가 원하는 정보를 얻도록 한다.

증강현실에서 가려진 마커를 위한 Affine-SIFT 정합 점들을 이용한 마커 검출 기법 (Marker Detection by Using Affine-SIFT Matching Points for Marker Occlusion of Augmented Reality)

  • 김용민;박찬우;박기태;문영식
    • 전자공학회논문지CI
    • /
    • 제48권2호
    • /
    • pp.55-65
    • /
    • 2011
  • 본 논문은 증강현실 시스템에서 마커가 가려진 상황에서도 강건한 마커 검출을 위하여 지역적인 특징 점들을 이용하는 방법을 제안한다. 가려진 마커를 효율적으로 검출하기 위하여, 첫 번째 단계로 등록된 마커와 가려진 마커가 포함된 입력 영상을 Affine-SIFT (ASIFT, Affine-Scale Invariant Features Transform) 방법을 이용해 정합된 특징 점들을 검출한다. 두 번째 단계로 정합된 특징 점들의 이상치(Outlier)를 제거하기 위하여, 등록된 마커의 특징 점들에 주성분 분석(Principal Component Analysis)을 적용하고 제 1 주축과 제 2 주축으로 사영한 후 중심으로 부터의 거리에 대한 평균값을 타원의 장축과 단축으로 지정한다. 세 번째 단계로 마커의 기하학적인 왜곡을 추정하기 위하여 특징 점들이 이루는 Convex-hull 지점들을 다각형의 꼭짓점으로 정한다. 마지막 단계로, 입력영상에 정합된 특징 점들의 기하적인 왜곡의 변화를 추정함으로써 마커의 가려진 환경에 서도 강건한 마커 검출 결과를 얻을 수 있다.

질감 필터를 이용한 눈 검출 (Eye Detection Using Texture Filters)

  • 박찬우;김용민;박기태;문영식
    • 전자공학회논문지CI
    • /
    • 제46권6호
    • /
    • pp.70-78
    • /
    • 2009
  • 본 논문에서는 눈 영역의 질감 및 구조적 특성을 고려한 두 가지 질감 필터들을 이용하여 눈 영역을 효과적으로 검출하는 방법을 제안한다. 인간의 눈 형태는 외형적으로 수평 방향으로 길고, 원형의 눈동자로 구성된 구조적 특성을 갖고 있다. 이 두가지 특성을 효율적으로 기술하는 질감 필터(Texture Filters)들로서 가보 필터(Gabor Filter)와 ART 기술자(Descriptor)가 사용된다. 가보 필터는 방향성 정보를 포함하고 있기 때문에, 수평 방향의 눈 형태 특성을 효과적으로 검출할 수 있다. 그리고 ART 기술자는 원형 모양의 특성을 갖는 눈동자를 검출하기 위해 사용되어진다. 본 논문에서는 효과적인 눈 영역을 검출하기 위하여, 첫 번째 단계에서 AdaBoost 분류기를 이용하여 얼굴 영역을 검출한다. 두 번째 단계는 검출된 얼굴 영역에 대해서 지역적인 조명 정규화 과정을 수행한다. 세 번째 단계에서는 두 가지의 질감 필터들을 이용하여 수평 방향과 원형 형태의 구조적 특성을 갖는 눈 후보영역을 검출하고, 마지막 단계에서는 검출된 눈 후보영역들 중에서 얼굴의 구조적인 특성을 가장 잘 표현하는 영역을 최적화된 눈 영역으로 추출한다. 제안한 알고리즘의 성능을 실험적으로 확인한 결과, 제안된 눈 검출 방법은 기존의 방법에 비해 정확률에서 2.9~4.4%의 향상된 검출 결과를 보인다.

적응적 피부색 검출과 에지 정보를 이용한 유해 영상분류방법 (Adult Image Classification using Adaptive Skin Detection and Edge Information)

  • 박찬우;박기태;문영식
    • 전자공학회논문지CI
    • /
    • 제48권1호
    • /
    • pp.127-132
    • /
    • 2011
  • 본 논문은 입력된 영상으로부터 적응적 피부색 검출 방법으로 생성된 피부색 영역과 에지 정보의 결합을 특정 벡터로 이용하여 입력 영상의 유해(누드, 성인물) 여부를 판별하는 방법을 제안한다. 제안하는 방법은 네 단계의 과정으로 이루어져 있다. 첫 번째 단계에서는 입력 영상으로부터 기존의 피부색 검출 방법들을 적용하여 얻은 모든 결과 영상들에 대해서 논리곱 연산을 통해 초기 피부색 영역을 검출한다. 두 번째 단계에서 초기 피부색 영역의 화소 정보를 기반으로 피부색 확률 분포 모델을 생성하고 이를 통해 피부색 확률 영상을 생성한다. 그리고 피부색 확률 영상에 임계값을 적용하여 이진화 한다. 세 번째 단계에서 이진 피부색 영역과 에지의 결합 영상을 생성하고 피부색 영역을 확산하여 최종 피부색 영역을 검출한다. 마지막 단계에서 최종 피부색 영상과 최종 피부색 영역 안에 있거나 인접한 에지들의 결합 영상을 특정 벡터로 생성한다. 생성된 특정 벡터를 support vector machine(SVM) 학습을 통해 생성된 분류 모텔로 입력 영상의 유해 여부를 판별하여 유해 혹은 무해 영상으로 분류한다. 실험 결과를 통하여 제안하는 방법이 기존의 유해 영상 분류 방법에 비해 분류 성능이 9.6% 향상된 것을 확인하였다.