• Title/Summary/Keyword: Amberlite XAD-2

Search Result 61, Processing Time 0.017 seconds

A comparative study for adsorption of carbolic acid by synthetic resins

  • Uslu, Hasan;Bamufleh, Hisham S.
    • Membrane and Water Treatment
    • /
    • v.6 no.6
    • /
    • pp.439-449
    • /
    • 2015
  • Carbolic Acid which is called phenol is one of the important starting and/or intermediate materials in various industrial processes. However, its excessive release into environment poses a threat to living organisms, as it is a highly carcinogens and hazardous pollutant even at the very low concentration. Thus removal of phenol from polluted environments is very crucial for sustainable remediation process. We developed a low cost adsorption method for separating phenol from a model aqueous solution. The phenol adsorption was studied using two adsorbents i.e., Amber lite XAD-16 and Amber lite XAD-7 HP with a constant amount of resin 0.1 g at varying aqueous phenol concentrations ($50-200mgL^{-1}$) at room temperature. We compared the efficacy of two phenol adsorbents for removing higher phenol concentrations from the media. We investigated equilibrium and kinetics studies of phenol adsorption employing Freundlich, Temkin and Langmuir isotherms. Amberlite XAD-16 performed better than Amberlite XAD-7 HP in terms of phenol removal efficiency that amounted to 95.52%. Pseudo second order model was highly fitted for both of the adsorption systems. The coefficient of determination ($R^2$) with Langmuir isotherm was found to be 0.98 for Amberlite XAD-7 HP. However, Freundlich isotherm showed $R^2$ value of 0.95 for Amberlite XAD-16, indicating that both isotherms could be described for the isotherms on XAD-7 HP and Amberlite XAD-16, respectively.

Adsorption Behavior of Monosubstituted-Halophenols by Amberlite XAD Resins (Amberlite XAD 수지에 대한 일치환 할로 페놀들의 흡착거동에 관한 연구)

  • Lee, Taek Hyeok;Lee, Dae Un
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.267-279
    • /
    • 1990
  • The adsorption mechanisms of phenols on XAD-2 and XAD-7 resins were studied by using the distribution coefficient(log Kd) measured in the optimum adsorption conditions. It was observed that the Langmuir adsorption isotherm, indicating a molecular size-dependent adsorption, was appropriate for characterizing the adsorption behaviors of phenols on XAD-2 and XAD-7 resins. The adsorption energies of phenols on XAD resins were calculated by Lennard-Jones potential equation. In the calculation of the adsorption energy, the molecular radii and dipole moments of the resins and phenols were calculated by their van der Waals volumes and Debye equation, respectively. The stacking factor (F) were determined from the radio of the equilibrium distance to the stacking distance of molecules. In order to explain the adsorption energy calculated from the stacking factor it was compared with the adsorption enthalpy for each of phenols which was experimentally determined by batch adsorption shake method. It was observed that the adsorption enthalpy of phenolate ions on the XAD resins was likely to be more seriously affected by dispersion interaction than by a dipole or a charge interaction.

  • PDF

A Study on the Adsorption and Recovery of Metal Ions by Amberlite XAD Resins Impregnated with Oxime Compounds (Oxime 화합물을 침윤시킨 Amberlite XAD 수지에 의한 금속이온의 흡착 및 회수에 관한 연구)

  • Dae Woon Lee;Eum Chul Hun;Young Hee Kim;Euy Kyung Yu
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.397-405
    • /
    • 1985
  • The adsorption behaviors of some oxime compounds well known as metal chelating agents on the Amberlite XAD resins were compared by measuring their distribution coefficients (log Kd) in various media, respectively. Among the oxime compounds, salicylaldoxime (SAO) and $\alpha-benzoinoxime(${\alpha}$-BzO)$ which showed large log Kd values were chosen. The characteristics of XAD-4 resins impregnated with SAO and ${\alpha}$-BzO have been studied to apply them for the adsorption and recovery of minute quantities of metal ions in aqueous solution. The optimum conditions for adsorption of SAO and ${\alpha}$-BzO on the resin were 30% methanol media having pH range of 1~8(for SAO) and 1~9 (for ${\alpha}$-BzO), respectively. The distribution coefficients of two oxime compounds were decreased as temperature increased. From the adsorption enthalpy data of SAO and ${\alpha}$-BzO, ranging from 4.96 to 6.66 Kcal/mol, it is suggested that their adsorption mechanism on XAD-4 resin is likely due to molecular adsorption equivalent to dipole-dipole interaction. The impregnated resins were considerably stable in the aqueous solutions of pH 5.0~10.0 and in 0.1~5M hydrochloric acid solutions. The former is the medium for adsorption of metal ions, while the latter is for recovery of the adsorbed metal ions. The adsorption mole ratio of Mn(II), Co(II), Ni(II), Zn(II) ions on SAO-XAD-4 and ${\alpha}$-BzO-XAD-4 resins were about 1 : 2 at the optimum conditions, respectively. The adsorbed metal ions were recovered completely by eluting with 3M HCl-50% methanol solution

  • PDF

Determination of Cadmium(II) and Copper(II) by Flame Atomic Absorption Spectrometry after Preconcentration on Column with Pulverized Amberlite XAD-4 with Bismuthiol I

  • Park, Dong-Seok;Choi, Hee-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1375-1382
    • /
    • 2007
  • A column preconcentration method with pulverized Amberlite XAD-4 loaded with bismuthiol I (BI) has been developed for the determination of trace Cd(II) and Cu(II) in various real samples by flame atomic absorption spectrophotometry. Various experimental conditions, such as the size of XAD-4, adsorption flow rate, amount of bismuthiol I, stirring time for adsorbing bismuthiol I on XAD-4, pH of sample solution, amount of XAD-4- BI, desorption solvent, and desorption flow rate, were optimized. Also, the adsorption capacity and the adsorption rate of Cd(II) and Cu(II) on XAD-4-BI were investigated. The interfering effects of various concomitant ions were investigated, Bi(III), Sn(II) and Fe(III) were found to affect the determination. But the interference by these ions was completely eliminated by adjusting the amount of XAD-4-BI resin to 0.70 g, although the adsorption flow rate was slower. For Cd(II) our proposed technique obtained a dynamic range of 0.5-40 ng mL-1, a correlation coefficient (R2) of 0.9913, and a detection limit of 0.3 ng mL-1. For Cu(II), the corresponding values were 2.0-120 ng mL-1, 0.9921 and 1.02 ng mL-1. To validate this proposed technique, the aqueous samples (stream water, reservoir water, tap water and wastewater), the diluted brass sample and the plastic sample, as real samples, were used. Recovery yields of 91-103% were obtained. These measured data were not different from ICP-MS data at 95% confidence level. Our proposed method was also validated using rice flour CRM (normal, fortified) samples. From the results of our experiment, we found that the technique we present here can be applied to the determination of Cd(II) and Cu(II) in various real samples.

New Analytical Methods for Separation and Identification of Heavy Metals (II). A Study on the Adsorption and Recovery of Cu(Ⅱ) ion by Amberlite XAD-7 Resins Impregnated with Chelating Agents (중금속의 분리 및 검출을 위한 분석화학적 연구 (제 2 보) 킬레이트제-Amberlite XAD-7 침윤수지에 의한 Cu(II) 이온의 흡착 및 회수에 관한 연구)

  • Dae Woon Lee;Chul Hun Eum;Tae Sung Kim;Doo-Soon Shin;Koo Soon Chung
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.308-314
    • /
    • 1987
  • The adsorption behavior of some chelating agents on the Amberlite XAD-7 resin was studied to obtain the optimum conditions for the preparation of chelating agent-XAD-7 resins. The chosen chelating agents are cupferron (CP), diphenylcarbazone (DPC), salicylaldoxime (SAO), thiosalicylic acid (TSA), and dimethylglyoxime (DMG), which have been well known chelating agents to Cu(Ⅱ) and Ni (Ⅱ) ions. Among the chelating agent-XAD-7 resins, SAO-XAD-7 and DMG-XAD-7 resins were evaluated as appropriate impregnated resins by investigating their stabilities in the wide pH range and high abilities to adsorb Cu(Ⅱ) and Ni(Ⅱ) ions. The selective adsorption of Cu(Ⅱ) from Ni(Ⅱ) was possible by changing pH condition by SAO-XAD-7 resin. The adsorption capacities of SAO-XAD-7 and DMG-XAD-7 for Cu(Ⅱ) were $7{\times}10^{-3}mmol$ Cu(Ⅱ) per gram of resin and $2{\times}10^{-3}mmol$ Cu(Ⅱ) per gram of resin, respectively. The quantitative recovery of Cu(Ⅱ) adsorbed by the resin was demonstrated. The adsorption behavior of Cu(Ⅱ) and Ni(Ⅱ) by the single and mixed bed of chelating agent-XAD-7 resin was discussed.

  • PDF

Spectrophotometric Determination of Iron with 2-Hydroxybenzaldehyde-5-nitro-pyridylhydrazone after Separation with Amberlite XAD-7 Nonionic Resin (Amberlite XAD-7 비이온성 수지로 분리 후 2-Hydroxybenzaldehyde-5-nitro-pyridylhydrazone을 이용한 철의 분광학적 정량)

  • Park, Chan Il;Chung, Byung Doo;Jung, Duck Chae;Cha, Ki Won
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.5
    • /
    • pp.522-526
    • /
    • 1999
  • 2-Hydroxybenzaldehyde-5-nitro-pyridylhydrazone (2HB-5NPH) was synthesized and its application to the spectrophotometric determination of iron was studied. The reagent reacts with iron in the pH range 6.0-7.5 to form a yellow coIored 1:2 chelate which is very stable in methanol solution. Beer's law is obeyed in the concentration range 0.05∼2.0 ${\mu}gmL^{-1}$ iron and separation procedure using a short column filled with Amberlite XAD-7 nonionic chelating resin is proposed for the spectrophotometric determination of traces of iron. The influence of several ions as interference was discussed. The separation of Fe(III) ion from the mix-ture solution were carried out with the buffer solution (pH 5.0) and 0.25M HCl as eluents.

  • PDF

A Study on Adsorption of Anionic Surfactants with Nonionic Resins (비이온성 수지를 이용한 음이온 계면활성제의 흡착에 관한 연구)

  • Seo, Yang-Gon;Ahn, Jou-Hyeon;Heo, Byeong-Young
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.369-376
    • /
    • 1996
  • The adsorption of the anionic surfactants, sodium lauryl sulfate (SLS) and sodium dodecylbenzene sulfonate (SDBS) anion surfactants form aqueous solutions with nonionic resins, Amberlite XAD-2, XAD-4 and XAD-7 at temperatures in 15~45$^{\circ}C$ range was studied. Several adsorption isotherm models were used to fit the experimental data, The best results were obtained with the Redlich-Peterson equation and the Freundlich model provided remarkably good fits. For a particular resin at a particular temperature, SDBS was more extensively adsorbed than SLS. The highest adsorption were obtained with XAD-4 resin and the specific surface area of the resins plays a major role in adsorption of the surfactants. Estimations of the isosteric heat of adsorption were indicative of an exothermic process, and their magnitudes manifested a physisorption process.

  • PDF

On-line Trace Enrichment in High Performance Liquid Chromatography Using XAD-2 Precolumn for the Determination of Lonazolac in Human Plasma

  • Lee, Hye-Suk;Kim, Eun-Joo;Zee, Ok-Pyo;Lee, Yoon-Joong
    • Archives of Pharmacal Research
    • /
    • v.12 no.2
    • /
    • pp.108-113
    • /
    • 1989
  • A new column-switching high performance liquid chromatographic method was developed for the determination of lonazolac in plasma. This method was based on the on-line trace enrichment of lonazolac using a precolumn packed with Amberlite XAD-2. The analysis was complete in 20 min. between injections and the limit of detection was $0.1{\mu}g/ml$ using $100{\mu}l$ of plasma. The method was linear in range of $0.1-10{\mu}g/ml$ with a correlation coefficient of 0.9991. Absolute recovery of lonazolac from the spiked plasma samples ranged from 95.6% to 97.1%. The method was shown to be reproducible over the concentration range studied.

  • PDF

Characteristics of the Conversion Pigment from Gardenia jasminoides Yellow Pigment (치자황색소로부터 변환된 색소의 특성)

  • Jeong, Hyung-Seok;Park, Keun-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.319-323
    • /
    • 1998
  • Conversion of Gardenia jasminoides yellow pigment into blue-green pigment by 8 bacterial species was examed. Bioconversion pattern can be categorized into three types according to absorption spectra characteristics. The same pattern of the value of ${\Delta}E$ estimated by color differencemeter was also observed. Conversion rate by S. epidermidis was faster than other bacterial species. It took 16 hour for S. epidermidis to convert pigment at $37^{\circ}C$. Gardenia jasminoides yellow pigment and conversion pigment were completely separated by Amberlite XAD column chromatography with $H_2O-MeOH$ solvent system. Storage stability of the conversion pigment was better than Gardenia jasminoides yellow pigment.

  • PDF

Studies on the Chelating Agent-Impregnated Resins for the Adsorption and Separation of Metal Ions (Ⅰ). 8-Hydroxyquinoline-Impregnated Resins (금속이온 흡착 및 분리를 위한 킬레이트 시약-침윤수지에 관한 연구 (제1보). 8-Hydroxyquinoline-침윤수지)

  • Dai Woon Lee;Tack Hyuck Lee;Kwang Ha Park
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.353-360
    • /
    • 1983
  • The adsorption behavior of 8-hydroxyquinoline (8HQ) on Amberlite XAD-4 and-7 resins was investigated by measuring its distribution coefficients under various experimental conditions, such as shaking time, pH and concentration of methanol in the medium. The application of 8HQ-impregnated-XAD resins for the absorption and separation of metal ions was studied. The maximum adsorption of 8HQ on XAD resins was observed in the 30% methanol solution having pH range from 6.0 to 9.0. The impregnation capacities of XAD resins for 8HQ were 3.81${\times}$10-2mmol, 8HQ/g, XAD-4 resins and 2.60${\times}$10-2mmol, 8HQ/g, XAD-7 resin, respectively. The 8HQ-impregnated-XAD resins were stable in pH range from 6.0 to 10.0 and the amount of 8HQ leached from XAD-4 resin by eluting with hydrochloric acid(above 5M) was negligible. The optimum pH range for the adsorption of metal ions on 8HQ-impregnated XAD resin was also 6.0 to 10.0, and the adsorption mole ratio of metal ion to 8HQ were 1 : 2 for Cu(II), Cd(II) and Ni(II), and 1 : 3 for Fe(III) at the above pH range. It was found that the absorbed metal ions on 8HQ-impregnated-XAD resins were recovered quantitatively with 5M HCl and 8HQ-impregnated-XAD-4 resin could be reusable over 5 times without decrease in its impregnation capacity.

  • PDF