Adsorption Behavior of Monosubstituted-Halophenols by Amberlite XAD Resins

Amberlite XAD 수지에 대한 일치환 할로 페놀들의 흡착거동에 관한 연구

  • 이택혁 (배재대학교 화학과) ;
  • 이대운 (연세대학교 이과대학 화학과)
  • Published : 19900500

Abstract

The adsorption mechanisms of phenols on XAD-2 and XAD-7 resins were studied by using the distribution coefficient(log Kd) measured in the optimum adsorption conditions. It was observed that the Langmuir adsorption isotherm, indicating a molecular size-dependent adsorption, was appropriate for characterizing the adsorption behaviors of phenols on XAD-2 and XAD-7 resins. The adsorption energies of phenols on XAD resins were calculated by Lennard-Jones potential equation. In the calculation of the adsorption energy, the molecular radii and dipole moments of the resins and phenols were calculated by their van der Waals volumes and Debye equation, respectively. The stacking factor (F) were determined from the radio of the equilibrium distance to the stacking distance of molecules. In order to explain the adsorption energy calculated from the stacking factor it was compared with the adsorption enthalpy for each of phenols which was experimentally determined by batch adsorption shake method. It was observed that the adsorption enthalpy of phenolate ions on the XAD resins was likely to be more seriously affected by dispersion interaction than by a dipole or a charge interaction.

Amberlite XAD-2 및 XAD-7 수지에 대한 페놀과 그 할로겐 일치환체들에 대한 흡착성을 분포계수를 측정하여 조사하였다. XAD 수지에 대한 페놀의 흡착은 Langmuir 등온흡착으로 설명될 수 있었으며, 이 때의 흡착은 분자의 크기에 따르는, 즉 분산상호작용에 기인하는 전형적인 물리흡착임을 알았다. 고분자 합성수지에 대한 페놀류의 흡착에너지는 Lennard-Jones potential로 계산하였다. 이 때 고분자 수지의 반지름은 수지의 최소기본단위의 van der Waals 부피로부터 계산하였으며 페놀류의 분자 반지름도 같은 방법으로 구하였다. 페놀유도체들의 흡착성은 각 수지에 대한 시료의 Stacking factor (F)-고분자 수지와 페놀류사이의 van der Waals 부피로부터 구한 평형거리의 보정인자-로부터 흡착에너지를 구하고 뱃치법으로 측정한 흡착엔탈피값과 비교함으로써 설명할 수 있었다. 각 수지에 대한 페놀이온의 흡착엔탈피는 쌍극자 작용력이나 하전-쌍극자 상호작용보다 분산상호작용이 주 요인인 것으로 나타났다.

Keywords

References

  1. Trans. Faraday Soc. v.24 J. E. Lennard-Jones
  2. Theoret. Chim. Acta v.31 Y. K. Kang;M. S. Jhon
  3. Physical Chemistry P. W. Atkins
  4. Z. Phys. v.63 F. London
  5. Physica v.4 J. E. Lennard-Jones
  6. Adv. Catalysis v.2 C. Kemball
  7. Anal. Chem. v.45 M. D. Grieser;D. J. Pitrzyk
  8. Physical Adsorption of Gases D. M. Young;A. D. Crowell
  9. The Stereochemistry of Macromolecules v.3 P. Corradini;A. D. Kettley(ed.)
  10. Environ. Sci. Technol. v.18 R. W. Walters;R. G. Luthy
  11. Lange's Handbook of Chemistry A. Dean(ed.)
  12. J. Comput. Chem. v.1 J. T. Sparague; N. L. Allinger
  13. Biopolymers v.13 J. Cailiet;P. Claverie
  14. Dynamical Character of Adsorption J. H. de Boer
  15. Properties of Polymers D. W. van Krevelen;P. J. Hoftyer
  16. Ann. Rev. Biophys. Bioeng. v.1 D. W. Brant
  17. Ind. Eng. Chem. Res. Develop. v.7 R. L. Gustafson;J. Albright;J. A. Heisler;O. T. Reid Jr.
  18. Chemical Thermodynamics P. A. Rock
  19. Adv. Catalysis v.8 J. H. de Bcer
  20. Adv. Catalysis v.12 D. J. C. Yates
  21. Introduction to the Principles of Heterogeneous Catalysis J. M. Thomas;W. Thomas
  22. Introduction to the Principles of Heterogeneous Catalysis J. M. Thomas;W. Thomas
  23. J. Am. Chem. Soc. v.38 I. Langmuir
  24. J. Am. Chem. Soc. v.40 I. Langmuir
  25. J. Am. Chem. Soc. v.39 I. Langmuir
  26. Table of Experimental Dipole Moments A. L. McClellan
  27. Molecular theory of Gases and Liquids J. O. Hirschfelder;C. f. Curtiss;R. B. Bird
  28. Polymer Sci. v.56 M. L. Huggins;G. Natta;H. J. Mark
  29. J. Phys. Chem. v.68 A. Bondi