• Title/Summary/Keyword: Alzheimer’s disease

Search Result 1,134, Processing Time 0.026 seconds

The Effects of Jeoreongchajeonja-tang(Zhulingjuqianzi-tang) on the βA and LPS Induced BV2 microglial cell (저령차전자탕(豬苓車前子湯)이 βA와 LPS로 처리된 BV2 microglial cell에 미치는 영향)

  • Ryu, Chang-Hee;Jung, In-Chul;Lee, Sang-Ryong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.23 no.1
    • /
    • pp.145-159
    • /
    • 2012
  • Objectives : This research investigates the effect of the JCT extract regarding Alzheimer's disease. Methods : The effects of the JCT extract on IL-$1{\beta}$, IL-6, TNF-${\alpha}$, COX-2, NOS-II mRNA, APP mRNA, BACE mRNA, Nitric oxide(NO), and ${\beta}A$ protein production in the BV2 microglia cell lines treated with LPS and ${\beta}A$ were investigated. Results : 1. The JCT extract suppressed the expression of IL-$1{\beta}$, IL-6, TNF-${\alpha}$, COX-2, and NOS-II mRNA in BV2 microglial cell line treated with LPS and ${\beta}A$. 2. The JCT extract suppressed the expression of BACE and APP mRNA in BV2 microglial cell line treated with LPS and ${\beta}A$. 3. The JCT extract suppressed the expression of Nitric oxide(NO) in BV2 microglial cell line treated with LPS and ${\beta}A$. 4. The JCT extract suppressed the expression of ${\beta}A$ protein production in BV2 microglial cell line treated with LPS and ${\beta}A$. Conclusions : These results suggest that the JCT group may be effective for the treatment of Alzheimer's disease. Thus, JCT could be considered among the future therapeutic drugs indicated for the treatment of Alzheimer's disease.

Harnessing the Power of Voice: A Deep Neural Network Model for Alzheimer's Disease Detection

  • Chan-Young Park;Minsoo Kim;YongSoo Shim;Nayoung Ryoo;Hyunjoo Choi;Ho Tae Jeong;Gihyun Yun;Hunboc Lee;Hyungryul Kim;SangYun Kim;Young Chul Youn
    • Dementia and Neurocognitive Disorders
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Background and Purpose: Voice, reflecting cerebral functions, holds potential for analyzing and understanding brain function, especially in the context of cognitive impairment (CI) and Alzheimer's disease (AD). This study used voice data to distinguish between normal cognition and CI or Alzheimer's disease dementia (ADD). Methods: This study enrolled 3 groups of subjects: 1) 52 subjects with subjective cognitive decline; 2) 110 subjects with mild CI; and 3) 59 subjects with ADD. Voice features were extracted using Mel-frequency cepstral coefficients and Chroma. Results: A deep neural network (DNN) model showed promising performance, with an accuracy of roughly 81% in 10 trials in predicting ADD, which increased to an average value of about 82.0%±1.6% when evaluated against unseen test dataset. Conclusions: Although results did not demonstrate the level of accuracy necessary for a definitive clinical tool, they provided a compelling proof-of-concept for the potential use of voice data in cognitive status assessment. DNN algorithms using voice offer a promising approach to early detection of AD. They could improve the accuracy and accessibility of diagnosis, ultimately leading to better outcomes for patients.

The effects of Rhizoma Acori Graminei water extract in Alzheimer's Disease Model induced by pCT105 (pCT105로 유도된 치매모델에서 석창포(石菖蒲) 수추출액(水抽出液)이 미치는 영향)

  • Choi, Hyuk;Kim, Sang-Ho;Lee, Dae-Yong;Ahn, Dae-Joong;Kang, Won-Hyung;Lyu, Yeoung-Su
    • Journal of Oriental Neuropsychiatry
    • /
    • v.13 no.2
    • /
    • pp.173-194
    • /
    • 2002
  • Alzheimer's disease(AD) is a geriatric dementia that is widespread in old age. In the future AD will be the largest problem in public health service. From old times, Much medicines have been used for treatment of dementia, but there is no medicine having obvious effect. AD is one of brain retrogression disease. So We studied on herbal medicine that have a relation of brain retrogression. From old times, In Oriental Medicine, Rhizoma Acori Graminei has been used for disease in relation to brain retrogression. We studied on the effects of anti-Alzheimer in pCT105-induced neuroblastoma cell lines by Rhizoma Acori Graminei extract As the result of this study, In RAG group, the apoptosis in the nervous system is inhibited, the repair against the degerneration of Neuroblastoma cells by CT105 expression is promoted. These results indicate that RAG possess strong inhibitory effect of apoptosis in the nervous system and repair effect against the degeneration of Neuroblastoma cells by CT105 expression.

  • PDF

Neuroprotective roles of pituitary adenylate cyclase-activating polypeptide in neurodegenerative diseases

  • Lee, Eun Hye;Seo, Su Ryeon
    • BMB Reports
    • /
    • v.47 no.7
    • /
    • pp.369-375
    • /
    • 2014
  • Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic bioactive peptide that was first isolated from an ovine hypothalamus in 1989. PACAP belongs to the secretin/glucagon/vasoactive intestinal polypeptide (VIP) superfamily. PACAP is widely distributed in the central and peripheral nervous systems and acts as a neurotransmitter, neuromodulator, and neurotrophic factor via three major receptors (PAC1, VPAC1, and VPAC2). Recent studies have shown a neuroprotective role of PACAP using in vitro and in vivo models. In this review, we briefly summarize the current findings on the neurotrophic and neuroprotective effects of PACAP in different brain injury models, such as cerebral ischemia, Parkinson's disease (PD), and Alzheimer's disease (AD). This review will provide information for the future development of therapeutic strategies in treatment of these neurodegenerative diseases.

Optimization of Deep Learning Model Using Genetic Algorithm in PET-CT Image Alzheimer's Classification (PET-CT 영상 알츠하이머 분류에서 유전 알고리즘 이용한 심층학습 모델 최적화)

  • Lee, Sanghyeop;Kang, Do-Young;Song, Jongkwan;Park, Jangsik
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.9
    • /
    • pp.1129-1138
    • /
    • 2020
  • The performance of convolutional deep learning networks is generally determined according to parameters of target dataset, structure of network, convolution kernel, activation function, and optimization algorithm. In this paper, a genetic algorithm is used to select the appropriate deep learning model and parameters for Alzheimer's classification and to compare the learning results with preliminary experiment. We compare and analyze the Alzheimer's disease classification performance of VGG-16, GoogLeNet, and ResNet to select an effective network for detecting AD and MCI. The simulation results show that the network structure is ResNet, the activation function is ReLU, the optimization algorithm is Adam, and the convolution kernel has a 3-dilated convolution filter for the accuracy of dementia medical images.

Study of Repair Effect of Anti-Alzheimer on $\beta$APP Overexpression In Neuroblastoma cell line by Ramulus et Uncus Uncariae (조구등이 $\beta$APP 과발현 인간 신경아세포암에서의 항치매 효과에 관한 연구)

  • Kim Sang Ho;Kang Won Hyung;Lyu Yeoung Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.5
    • /
    • pp.960-966
    • /
    • 2002
  • Ramulus et Uncus Uncariae (JGD) has sweet in flavour and slightly cold in property, acting on the liver and pericardium channels. This drug was described in a medical classic as having the ability to remove 'heat', check hyperfunction of the liver and relieve dizziness, tremors, and convulsions, and subdue 'endogenous wind'. So this study was estimated to check the anti-neuropathological effect of JGD on the Alzheimer in βAPP overexpression in neuroblastoma cell line and JGD extract was showed significantly anti-alzheimer effects (50 and 100 μg/㎖ of JGD extracts) compared with control group. Ramulus et Uncus Uncariae has anti-alzheimer effects on the βAPP overexpression in neuroblastoma cell line. So we expect that Ramulus et Uncus Uncariae may be used as a drug for neurodegenerative disease, such as stroke, Alzheimer's disease (AD). These results indicate that Ramulus et Uncus Uncariae possess strong inhibitory effect in the nervous system of apoptosis and repair effect against the degeneration of Neuroblastoma cells by βAPP expression.

Function and dysfunction of leucine-rich repeat kinase 2 (LRRK2): Parkinson's disease and beyond

  • Bae, Jae Ryul;Lee, Byoung Dae
    • BMB Reports
    • /
    • v.48 no.5
    • /
    • pp.243-248
    • /
    • 2015
  • Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease (PD). As such, functions and dysfunctions of LRRK2 in PD have been the subject of extensive investigation. In addition to PD, increasing evidence is suggesting that LRRK2 is associated with a wide range of diseases. Genome-wide association studies have implicated LRRK2 in Crohn's disease (CD) and leprosy, and the carriers with pathogenic mutations of LRRK2 show increased risk to develop particular types of cancer. LRRK2 mutations are rarely found in Alzheimer's disease (AD), but LRRK2 might play a part in tauopathies. The association of LRRK2 with the pathogenesis of apparently unrelated diseases remains enigmatic, but it might be related to the yet unknown diverse functions of LRRK2. Here, we reviewed current knowledge on the link between LRRK2 and several diseases, including PD, AD, CD, leprosy, and cancer, and discussed the possibility of targeting LRRK2 in such diseases. [BMB Reports 2015; 48(5): 243-248]

Protective Effects of Rehmannia Glutinosa Extract and Rehmannia Glutinosa Vinegar against b-amyloid-induced Neuronal Cell Death (베타아밀로이드로 유도된 신경세포사멸에 대한 지황(地黃) 및 지황식초(地黃食醋)의 보호효과)

  • Song, Hyo-In;Kim, Kwang-Joong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.190-198
    • /
    • 2007
  • Alzheimer's disease, a representative neurodegenerative disorder, is characterized by the presence of senile plaques and neurofibrillary tangles accompanied by neuronal damages. b-Amyloid peptide is considered to be responsible for the formation of senile plagues that accumulate in the brains of patients with Alzheimer's disease. There has been compelling evidence supporting that b-amyloid-induced cytotoxicity is mediated through generation of reactive oxygen species. In this study, we have investigated the possible protective effect of Rehmannia glutihosaagainst b-amyloid-induced oxidative ceil death in cultured human neuroblastoma SH-SY5Y cells. SH-SY5Y cells treated with b-amyloid underwent apoptotic death as determined by morphological features and positive in situterminal end-labeling (TUNEL staining). Rehmannia glutinosawater extract, wine, and vinegar pretreatments attenuated b-amyloid-induced cytotoxicity and apoptosis. Rehmannia glutinosa vinegar exhibited maximum protective effect by increasing the expression of anti-apoptotic protein, Bcl-2. in addition to oxidative stress, b-amyloid-treatment caused nitrosative stress via marked increase in the levels of nitric oxide, which was effectively blocked by Rehmannia glutinosa. To further explore the possible molecular mechanisms underlying the protective effect of Rehmannia glutinosa, we assessed the mRNA expression of cellular antioxidant enzymes. Treatment of Rehmannia glutinosa vinegar led to up-regulation of heme oxygemase-1 and catalase. These results suggest that Rehmannia glutinosa could modulate oxidative neuronal cell death caused by b-amyloid and may have preventive or therapeutic potential in the management of Alzheimer's disease. Particularly, Rehmannia glutinosa vinegar can augment cellular antioxidant capacity, there by exhibiting higher neuroprotective potential.

Effect on Alzheimer's Disease by Sesim-tang in CT105-overexpressed SK-N-SH Cell Lines (CT105로 유도된 신경모세포종 세포주에서 세심탕의 항치매 효과)

  • 권형수;박치상;박창국
    • The Journal of Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.138-150
    • /
    • 2004
  • Objectives : Alzheimer's disease (AD) is a geriatric dementia that is widespread in old age. In the near future AD will be the biggest problem in public health service. Although a variety of oriental prescriptions, including Sesim-tang, have been traditionally utilized for the treatment of AD, their pharmacological effects and action mechanisms have not yet been fully elucidated. The present study investigated the effects of Sesim-tang on apoptotic cell death induced by CT105 (carboxy terminal 105 amino acid peptide fragment of APP) overexpression in SK-N-SH neuroblastoma cell lines. Methods: We studied the regenerative and inhibitory effects on Alzheimer's disease in CT105-induced SK-N-SH cell lines by Sesim-tang water extract. We examined for cell morphological pattern, DNA fragmentation, LDH activity assay, zymography assay, and immunohistochemistric analysis. Additionally, we investigated the association between the CT105 and neurite degeneration caused by CT105-induced apoptotic response in neurone cells. Results: Findings from our experiments have shown that Sesim-tang inhibits the synthesis or activities of CT105, which has neurotoxicities and apoptotic activities in the cell line. In addition, pretreatment with Sesim-tang ($>50\mu\textrm{g}/ml$ for 12 hours) partially prevented CT105-induced cytotoxicity in SK-N-SH cell lines. SK-N-SH cell lines overexpressed with CT105 exhibited remarkable apoptotic cell damage. Based on morphological observations by phase-contrast microscope and LDH activity measurements in the culture media, the CT105-induced cell death was significantly inhibited by Sesim-tang water extract. Sesim-tang was found to reduce the expression of APP and caspase-3 induced by CT105 in SK-N-SH cell lines and in rat hippocampus. Conclusions: As the result of this study, in the Sesim-tang group, apoptosis in the nervous system is inhibited, the repair against the degeneration of SK-N-SH cell lines by CT105 expression is promoted. Hence, Sesim-tang may be beneficial for the treatment of AD.

  • PDF