• 제목/요약/키워드: Alzheimer's disease${\beta}$-amyloid

검색결과 303건 처리시간 0.026초

Synthesis of 6-[2-(Benzoxazol-2-ylmethylamino )ethoxy]-1-Alkyl­1 H-lndole-2-Carboxylic Acid and Inhibitory Activity on $\beta$-Amyloid Aggregation

  • Lee, Sun-Mi;Jeon, Raok
    • Archives of Pharmacal Research
    • /
    • 제28권11호
    • /
    • pp.1219-1223
    • /
    • 2005
  • 6-[2-(Benzoxazol-2-ylmethylamino)ethoxy]-1-alkyl-1H-indole-2-carboxylic acids were designed and synthesized as $\beta$-amyloid (A$\beta$) fibril assembly inhibitors. Their inhibitory activity on A$\beta$, aggregation was evaluated by thioflavin T assay although their activities were insignificant.

성심지황탕(醒心地黃湯) 열수추출물과 초미세분말제형이 Alzheimer's Disease 병태 모델에 미치는 영향 (Effects of Sungsimjihwang-tang Hot Water Extract & Ultra-fine Powder on the Alzheimer's Disease Model)

  • 민경직;이상룡;정인철
    • 동의생리병리학회지
    • /
    • 제22권5호
    • /
    • pp.1178-1191
    • /
    • 2008
  • This experiment was designed to investigate the effect of the SSJHT hot water extract & ultra-fine Powder on Alzheimer's Disease Model Induced by ${\beta}A$. The effects of the SSJHT hot water extract on expression of IL-1RA, $IL-1{\beta}$$, IL-6, IL-10, $TNF-{\alpha}$, NOS-II, COX-2 mRNA and production of $IL-1{\beta}$, IL-6, $TNF-{\alpha}$ in BV2 microglial cell line treated by lipopolysacchaide(LPS). The effects of the SSJHT hot water extract & ultra-fine powder on (1) the behavior (2) expression of $IL-1{\beta}$, $TNF-{\alpha}$, MDA, CD68, CD11b and AChE (3) and the infarction area of the hippocampus in Alzheimer's diseased mice induced with ${\beta}A$ were investigated. The SSJHT hot water extract suppressed the expression of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$, NOS-II, COX-2 mRNA and increased IL-1RA, IL-10 in BV2 microglia cell line treated with LPS. The SSJHT hot water extract suppressed the production of $IL-1{\beta}$, IL-6, $TNF-{\alpha}$ significantly in BV2 microglial cell line treated with LPS. The SSJHT hot water extract & ultra-fine powder a significant inhibitory effect on the memory deficit was shown for the mice with Alzheimer's disease induced by ${\beta}A$ in the Morris water maze experiment, which measured step-through latency. The SSJHT hot water extract & ultra-fine powder suppressed the expression of $TNF-{\alpha}$$, $L-1{\beta}$ protein significantly in the microglial cell of mice with Alzheimer's disease induced by ${\beta}A$. The SSJHT hot water extract & ultra-fine powder reduced the MDA and suppressed the over-expression of CD68, CD11b in the mice with Alzheimer's disease induced by ${\beta}A$. The SSJHT hot water extract & ultra-fine powder significantly decreased AChE activity in the serum of the mice with Alzheimer's disease induced by ${\beta}A$. The SSJHT hot water extract & ultra-fine powder reduced infarction area of hippocampus. and controlled the injury of brain tissue in the mice with Alzheimer's disease induced by ${\beta}A$. The results suggest that the SSJHT hot water extract & ultra-fine powder may be effective for treatment of Alzheimer's disease. Investigation into the clinical use of the SSJHT hot water extract & ultra-fine powder for Alzheimer's disease is suggested for future research.

Ginsenoside (20S)Rg3 Ameliorates Synaptic and Memory Deficits in an Animal Model of Alzheimer's Disease

  • Kim, Tae-Wan
    • 한국약용작물학회:학술대회논문집
    • /
    • 한국약용작물학회 2011년도 추계학술발표회
    • /
    • pp.31-45
    • /
    • 2011
  • The amyloid ${\beta}$-peptide ($A{\beta}$), which originates from the proteolytic cleavage of amyloid precursor protein (APP), plays a central role in the pathogenesis of Alzheimer's disease (AD). Mounting evidence indicates that different species of $A{\beta}$, such as $A{\beta}$ oligomers and fibrils, may contribute to AD pathogenesis via distinct mechanisms at different stages of the disease. Importantly, elevation and accumulation of soluble $A{\beta}$ oligomers closely correlate with cognitive decline and/or disease progression in animal models of AD. In agreement with these studies, oligomers of $A{\beta}$ have been shown to directly affect synaptic plasticity, a neuronal process that is known to be essential for memory formation. Our previous studies showed that $A{\beta}$ induces the breakdown of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a phospholipid that regulates key aspects of neuronal function. PI(4,5)P2 breakdown was found to be a key step toward synaptic and memory dysfunction in a mouse model of AD. To this end, we seek to identify small molecules that could elevate the levels of PI(4,5)P2 and subsequently block $A{\beta}$ oligomer-induced breakdown of PI(4,5)P2 and synaptic dysfunction.. We found that (20S)Rg3, an active triterpene glycoside from heat-processed ginseng, serves as an agonist for phosphatidylinositol 4-kinase IIalpha (PI4KIIalpha), which is a lipid kinase that mediates a rate-limiting step in PI(4,5)P2 synthesis. Consequently, (20S)Rg3 stimulates PI(4,5)P2 synthesis by directly stimulating the activity of PI4KIIalpha. Interestingly, treatment of a mouse model of AD with (20S)Rg3 leads to reversal of memory deficits. Our data suggest that the PI(4,5)P2-promoting effects of (20S)Rg3 may help mitigate the cognitive symptoms associated with AD.

  • PDF

오미자 리그난 화합물의 베타-아밀로이드간 결합 억제 및 해리 효과 (Effect of Lignan Components from Schizandra chinensis on Beta-amyloid Aggregation Inhibition and Dissociation)

  • 유호진;윤미소;김도윤;원경종;김보경;장상희;이환명
    • 약학회지
    • /
    • 제56권5호
    • /
    • pp.293-298
    • /
    • 2012
  • The present study tested the effect of Schizandra chinensis lignan compounds, Gomisin A and Schizandrin, on the aggregation and dissociation of beta-amyloid $(A{\beta})_{1-42}$ to explore a possible therapeutic target for Alzheimer's disease. Gomisin A significantly inhibited the $A{\beta}_{1-42}$ aggregation in a dose dependent manner, but did not induced the dissociation of aggregated $A{\beta}_{1-42}$. On the other hand, Schizandrin significantly suppressed the aggregation and dissociation of $A{\beta}_{1-42}$. These results suggest that Gomisin A and Schizandrin, which are known as biologically active ingredients from Schizandra chinensis, may be potentially useful target molecules to develop a drug for the prevention or treatment of Alzheimer's disease.

Synthesis and Evaluation of Oleanolic Acid-Conjugated Lactoferrin for β-Amyloid Plaque Imaging

  • Kim, Sung-Min;Kim, Dongkyu;Chae, Min Kyung;Jeong, Il-Ha;Cho, Jee-Hyun;Choi, Naeun;Lee, Kyo Chul;Lee, Chulhyun;Ryu, Eun Kyoung
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3671-3675
    • /
    • 2012
  • ${\beta}$-Amyloid accumulation in the brain is a pathological hallmark of Alzheimer's disease (AD). Since early detection of ${\beta}$-amyloid may facilitate more successful and timely therapeutic interventions, many investigators have focused on developing AD diagnostic reagents that can penetrate the blood-brain barrier (BBB). Oleanolic acid (OA) is a substance found in a variety of plants that has been reported to prevent the progression of AD in mice. In this study, we synthesized and evaluated a new radioligand in which OA was conjugated to lactoferrin (Lf, an iron-binding glycoprotein that crosses the BBB) for the diagnosis of AD. In an in vitro study in which OA-Lf was incubated with ${\beta}$-amyloid (1-42) aggregates for 24 h, we found that OA-Lf effectively inhibited ${\beta}$-amyloid aggregation and fibril formation. In vivo studies demonstrated that $^{123}I$-OA-Lf brain uptake was higher than$^{123}I$-Lf uptake. Therefore, radiolabeled OA-Lf may have diagnostic potential for ${\beta}$-amyloid imaging.

VGG-based BAPL Score Classification of 18F-Florbetaben Amyloid Brain PET

  • Kang, Hyeon;Kim, Woong-Gon;Yang, Gyung-Seung;Kim, Hyun-Woo;Jeong, Ji-Eun;Yoon, Hyun-Jin;Cho, Kook;Jeong, Young-Jin;Kang, Do-Young
    • 대한의생명과학회지
    • /
    • 제24권4호
    • /
    • pp.418-425
    • /
    • 2018
  • Amyloid brain positron emission tomography (PET) images are visually and subjectively analyzed by the physician with a lot of time and effort to determine the ${\beta}$-Amyloid ($A{\beta}$) deposition. We designed a convolutional neural network (CNN) model that predicts the $A{\beta}$-positive and $A{\beta}$-negative status. We performed 18F-florbetaben (FBB) brain PET on controls and patients (n=176) with mild cognitive impairment and Alzheimer's Disease (AD). We classified brain PET images visually as per the on the brain amyloid plaque load score. We designed the visual geometry group (VGG16) model for the visual assessment of slice-based samples. To evaluate only the gray matter and not the white matter, gray matter masking (GMM) was applied to the slice-based standard samples. All the performance metrics were higher with GMM than without GMM (accuracy 92.39 vs. 89.60, sensitivity 87.93 vs. 85.76, and specificity 98.94 vs. 95.32). For the patient-based standard, all the performance metrics were almost the same (accuracy 89.78 vs. 89.21), lower (sensitivity 93.97 vs. 99.14), and higher (specificity 81.67 vs. 70.00). The area under curve with the VGG16 model that observed the gray matter region only was slightly higher than the model that observed the whole brain for both slice-based and patient-based decision processes. Amyloid brain PET images can be appropriately analyzed using the CNN model for predicting the $A{\beta}$-positive and $A{\beta}$-negative status.

Protective Effect of Citrate against $A{\beta}$-induced Neurotoxicity in PC12 Cells

  • Yang, Hyun-Duk;Son, Il-Hong;Lee, Sung-Soo;Park, Yong-Hoon
    • Molecular & Cellular Toxicology
    • /
    • 제4권2호
    • /
    • pp.157-163
    • /
    • 2008
  • Formation of ${\beta}$-amyloid $(A{\beta})$ fibrils has been identified as one of the major characteristics of Alzheimer's disease (AD). Inhibition of $A{\beta}$ fibril formation in the CNS would be attractive therapeutic targets for the treatment of AD. Several small compounds that inhibit amyloid formation or amyloid neurotoxicity in vitro have been known. Citrate has surfactant function effect because of its molecular structure having high anionic charge density, in addition to the well-known antibacterial and antioxidant properties. Therefore, we hypothesized that citrate might have the inhibitory effect against $A{\beta}$ fibril formation in vitro and have the protective effect against $A{\beta}$-induced neurotoxicity in PC12 cells. We examined the effect of citrate against the formation of $A{\beta}$ fibrils by measuring the intensity of fluorescence in thioflavin-T (Th-T) assay of between $A{\beta}_{25-35}$ groups treated with citrate and the control with $A{\beta}_{25-35}$ alone. The neuroprotective effect of citrate against $A{\beta}$-induced toxicity in PC12 cells was investigated using the WST-1 assay. Fluorescence spectroscopy showed that citrate inhibited dose-dependently the formation of $A{\beta}$ fibrils from ${\beta}$-amyloid peptides. The inhibition percentages of $A{\beta}$ fibril formation by citrate (1, 2.5, and 5 mM) were 31%, 60%, and 68% at 7 days, respectively in thioflavin-T (Th-T) assay. WST-1 assay revealed that the toxic effect of $A{\beta}_{25-35}$ was reduced, in a dose-dependent manner to citrate. The percentages of neuroprotection by citrate (1, 2.5, and 5 mM) against $A{\beta}-induced$ toxicity were 19%, 31 %, and 34%, respectively. We report that citrate inhibits the formation of $A{\beta}$ fibrils in vitro and has neuroprotective effect against $A{\beta}$-induced toxicity in PC12 cells. Neuroprotective effects of citrate against $A{\beta}$ might be, to some extent, attributable to its inhibition of $A{\beta}$ fibril formation. Although the mechanism of anti-amyloidogenic activity is not clear, the possible mechanism is that citrate might have two effects, salting-in and surfactant effects. These results suggest that citrate could be of potential therapeutic value in Alzheimer's disease.

현삼(玄蔘) 수추출물(水抽出物)이 아밀로이드 전구단백질(前驅蛋白質)로 형질전환(形質轉換)된 초파리에 미치는 효과 (Study of Anti-Alzheimer Activities from Scrophularia buergeriana Water Extract by Alzheimer's Protein APP-transgenic Fly)

  • 김진우;이순이;이종화;민상준;김태헌;유영수;강형원
    • 동의신경정신과학회지
    • /
    • 제20권2호
    • /
    • pp.121-131
    • /
    • 2009
  • Objectives : From Scrophularia buergeriana water extract(SBW), has been used in vivo test for its beneficial effects on neuronal survival and neuroprotective functions, particularly in connection with APP-related dementias and Alzheimer's disease(AD). $A{\beta}$ oligomer derived from proteolytic processing of the ${\beta}$-amyloid precursor protein(APP), including the amyloid-${\beta}$ peptide($A{\beta}$), play a critical role in the pathogenesis of Alzheimer's dementia. Methods : Using drosophila APP model on APP-induced neuronal cytotoxicity, we demonstrated that SBW prevents neurotoxicity of $A{\beta}$ oligomer, which are the behavior, and possibly causative, feature of AD. We investigated the neuroprotective effects of SBW against the effects of oligomeric $A{\beta}$ and fly behaveior and life span by UAS-GRIM/APP-GAL within transgenic flies. Results and Conclusions : SBW repaired damage leading to the behaveior of APP-induced fly and delayed life span. These results suggest that neuronal damage in AD might be due to two factors: a direct $A{\beta}$ oligomer toxicity and multiple cellular and molecular neuroprotective mechanisms, including attenuation of apoptosis and direct inhibition of $A{\beta}$ oligomer, underlie the neuroprotective effects of SBW.

  • PDF

여주의 amyloid beta 유도 알츠하이머질환 동물 모델에서 인지능력 개선 효과 (Cognitive improvement effects of Momordica charantia in amyloid beta-induced Alzheimer's disease mouse model)

  • 신승미;김지현;조은주;김현영
    • Journal of Applied Biological Chemistry
    • /
    • 제64권3호
    • /
    • pp.299-307
    • /
    • 2021
  • 뇌 내 amyloid beta (Aβ) 축적으로 인한 신경독성은 산화적 스트레스를 야기하여 알츠하이머 질환(Alzheimer's disease, AD)을 유도하는 것으로 알려져 있다. 본 연구는 여주(Momordica charantia L.)의 활성분획물인 butanol (BuOH) 분획물의 Aβ25-35 유도 AD 동물모델에서 인지능 개선 효과에 대해 연구하였다. T-미로 실험 및 물체인지실험을 통해서 여주 BuOH 분획물 100 및 200 mg/kg/day 농도 투여군은 AD를 유도한 control군에 비해 유의적으로 새로운 경로와 물체를 탐색하는 비율이 감소되어 공간인지 및 물체인지능력 개선 효과를 확인하였다. 수중미로실험을 통해 학습·기억력에 미치는 효과를 측정한 결과, 여주 BuOH 분획물 투여군은 훈련을 반복할수록 숨겨진 도피대를 찾아가는 시간이 감소함을 통해 학습·기억력 개선 효과를 나타내었다. 여주 BuOH 분획물이 산화적 스트레스 개선 효과에 미치는 효과를 확인하기 위해 뇌, 간, 신장 조직에서 지질과 산화 함량 및 nitric oxideNO 생성량을 측정하였다. 여주 BuOH 분획물을 처리한 군은 Aβ25-35를 주입한 control군에 비해 유의적으로 뇌, 간, 신장 조직에서 지질과산화 함량 및 NO 생성량이 감소되어 산화적 스트레스 개선 효과를 확인하였다. 따라서 본 연구는 여주 BuOH 분획물이 Aβ25-35 유도 AD 동물모델에서 산화적 스트레스 개선을 통해 인지능력 개선 효과를 나타냄을 확인하였으며, 이에 따라 여주는 AD 예방 및 개선용 소재로써의 가능성이 있는 것으로 사료된다.

알쯔하이머 질환의 신경생물학 (Neurobiology of Alzheimer's Disease)

  • 정영조;서승우;이승환
    • 생물정신의학
    • /
    • 제8권1호
    • /
    • pp.62-70
    • /
    • 2001
  • Alzheimer's disease(AD) is associated with a characteristic neuropathology. The major hallmarks of AD are senile plaques (SPs) and neurofibrillary tangles(NFTs). ${\beta}$-amyloid protein($A{\beta}$) is derived from the proteolysis of amyloid precursor protein(APP) and then converted to SPs. Mature SPs produce cytotoxicity through direct toxic effects and activation of microglia and complement. NFTs are composed of paired helical filaments(PHFs) including abnormally phosphorylated form of the microtubule-associated protein(MAP) tau and increased tau level in cerebrospinal fluid may be observed in most AD. The aggregation of $A{\beta}$ and tau formation are thought to be a final common pathway of AD. Acetylcholine, dopamine, serotonin, GABA and their receptors are associated with AD. Especially, decreased nicotinic acetylcholine receptors(nAChRs) in AD are reported. Genetic lesions associated with AD are mutations in the structural genes for the APP located on chromosome 21, presenilin(PSN)1 located on chromosome 14 and PSN2 located on chromosome 1. Also, trisomy 21, Apo-E gene located on chromosome 19, PMF locus, low density lipoprotein receptor-related protein and ${\alpha}$-macroglobulin increase risk of AD. In this article, we will review about the neurobiology of AD and some newly developed research areas.

  • PDF