• Title/Summary/Keyword: Alveolar Bone Loss

Search Result 335, Processing Time 0.023 seconds

Evaluation of alveolar bone loss following rapid maxillary expansion using cone-beam computed tomography

  • Baysal, Asli;Uysal, Tancan;Veli, Ilknur;Ozer, Torun;Karadede, Irfan;Hekimoglu, Seyit
    • The korean journal of orthodontics
    • /
    • v.43 no.2
    • /
    • pp.83-95
    • /
    • 2013
  • Objective: To evaluate the changes in cortical bone thickness, alveolar bone height, and the incidence of dehiscence and fenestration in the surrounding alveolar bone of posterior teeth after rapid maxillary expansion (RME) treatment using cone-beam computed tomography (CBCT). Methods: The CBCT records of 20 subjects (9 boys, mean age: $13.97{\pm}1.17$ years; 11 girls, mean age: $13.53{\pm}2.12$ year) that underwent RME were selected from the archives. CBCT scans had been taken before (T1) and after (T2) the RME. Moreover, 10 of the subjects had 6-month retention (T3) records. We used the CBCT data to evaluate the buccal and palatal aspects of the canines, first and second premolars, and the first molars at 3 vertical levels. The cortical bone thickness and alveolar bone height at T1 and T2 were evaluated with the paired-samples t-test or the Wilcoxon signed-rank test. Repeated measure ANOVA or the Friedman test was used to evaluate the statistical significance at T1, T2, and T3. Statistical significance was set at p < 0.05. Results: The buccal cortical bone thickness decreased gradually from baseline to the end of the retention period. After expansion, the buccal alveolar bone height was reduced significantly; however, this change was not statistically significant after the 6-month retention period. During the course of the treatment, the incidence of dehiscence and fenestration increased and decreased, respectively. Conclusions: RME may have detrimental effects on the supporting alveolar bone, since the thickness and height of the buccal alveolar bone decreased during the retention period.

Reproducibility of cone-beam computed tomographic measurements of bone plates and the interdental septum in the anterior mandible

  • Valerio, Claudia Scigliano;Alves, Claudia Assuncao e;Manzi, Flavio Ricardo
    • Imaging Science in Dentistry
    • /
    • v.49 no.1
    • /
    • pp.9-17
    • /
    • 2019
  • Purpose: This study aimed to introduce a novel method to evaluate the alveolar bone and interdental septum in the anterior mandible using cone-beam computed tomography (CBCT). Materials and Methods: Fifty-six CBCT scans from adult patients were selected. The CBCT scans were obtained before and after orthodontic treatment. The following measurements were taken: width of the alveolar bone and the interdental septum, height of the interdental septum, height of the bone plates, distance between the cementoenamel junction and marginal bone crests, and vertical positioning of the mandibular incisor, using the lingual plane as a reference. To test the reproducibility and the stability of the lingual plane, a triangle was traced in the anterior mandible. The intra-class correlation coefficient(ICC) was used to determine intra- and inter-examiner agreement. The paired Student t-test was used to evaluate the area of the triangle and the reproducibility of all measurements. Results: The ICC was excellent for the alveolar bone and dental measurements (0.9989 and 0.9977, respectively), as well as for the interdental septum (0.9987 and 0.9961, respectively). The area of the triangles showed stability in the lingual plane (P>0.05). For the alveolar bone, mandibular incisor, and interdental septum measurements, no statistically significant differences were found between the 2 examiners(P>0.05), confirming the technical reliability of the measurements. Conclusion: The method used in this study provides a valid and reproducible assessment of alveolar bone dimensions in the anterior mandible measured on CBCT images.

APPLICATION OF FINITE ELEMENT ANALYSIS TO EVALUATE IMPLANT FRACTURES

  • Kim Yang-Soo;Kim Chang-Whe;Lim Young-Jun;Kim Myung-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.3
    • /
    • pp.295-313
    • /
    • 2006
  • Statement of problem. Higher fracture rates were reported for Branemark implants placed in the maxilla and for 3.75 mm diameter implants installed in the posterior region. Purpose. The purpose of this study was to investigate the fracture of a fixture by finite element analysis and to compare different diameter of fixtures according to the level of alveolar bone resorption. Material and Methods. The single implant and prosthesis was modeled in accordance with the geometric designs for the 3i implant systems. Models were processed by the software programs HyperMesh and ANSA. Three-dimensional finite element models were developed for; (1) a regular titanium implant 3.75 mm in diameter and 13 mm in length (2) a regular titanium implant 4.0 mm in diameter and 13 mm in length (3) a wide titanium implant 5.0 mm in diameter and 13 mm in length each with a cementation type abutment and titanium alloy screw. The abutment screws were subjected to a tightening torque of 30 Ncm. The amount of preload was hypothesized as 650 N, and round and flat type prostheses were 12 mm in diameter, 9 mm in height were loaded to 600 N. Four loading offset points (0, 2, 4, and 6 mm from the center of the implants) were evaluated. To evaluate fixture fracture by alveolar bone resorption, we investigated the stress distribution of the fixtures according to different alveola. bone loss levels (0, 1.5, 3.5, and 5.0 mm of alveolar bone loss). Using these 12 models (four degrees of bone loss and three implant diameters), the effects of load-ing offset, the effect of alveolar bone resorption and the size of fixtures were evaluated. The PAM-CRASH 2G simulation software was used for analysis of stress. The PAM-VIEW and HyperView programs were used for post processing. Results. The results from our experiment are as follows: 1. Preload maintains implant-abutment joint stability within a limited offset point against occlusal force. 2. Von Mises stress of the implant, abutment screw, abutment, and bone was decreased with in-creasing of the implant diameter. 3. With severe advancing of alveolar bone resorption, fracture of the 3.75 and the 4.0 mm diameter implant was possible. 4. With increasing of bending stress by loading offset, fracture of the abutment screw was possible.

Implant fixed prosthetic treatment using CAD/CAM system in a patient with severe alveolar resorption (임상가를 위한 특집 3 - 심하게 흡수된 치조제를 가진 환자에서 CAD/CAM을 이용한 임플란트 고정성 보철치료)

  • Choi, Yu-Sung
    • The Journal of the Korean dental association
    • /
    • v.50 no.3
    • /
    • pp.126-139
    • /
    • 2012
  • Loss of dentition can lead to not only compromised esthetics and functions of the patient, but also alveolar bone resorption. Bone grafting with prosthetic reconstruction of the gingiva can be selected for the treatment, and it provides many benefits as prosthetic gingival reconstruction does not require a complicated surgical process and is available within a short period of time, with stable clinical results. However, conventional porcelain fused to metal prosthesis has certain limits due to its size, and deformation after several firing procedures. In this clinical report, the author would like to introduce a patient with severe alveolar resorption who was treated with gingiva-shaped zirconia/titanium CAD/CAM implant fixed prosthesis for esthetic and functional rehabilitation. Clinical reports Clinical report 1, 2 : A case of loss of anterior dentition with atrophied alveolar bone. Implant retained zirconia bridge applied with Procera implant bridge system to simulate the gingiva. Upper structure was fabricated with zirconia all ceramic crown. Clinical report 3, 4 : A case of atrophied maxillary alveolus was reconstructed with fixed implant prosthesis, a CAD/CAM designed titanium structure covered wi th resin on its surface. Anterior dentition was reconstructed with zirconia crown. Conclusion and clinical uses. All patients were satisfied with the outcome, and maintained good oral hygiene. Zirconia/titanium implant fixed prosthesis fabricated by CAD/CAM system was highly accurate and showed adequate histological response. No critical failure was seen on the implant fixture and abutment overall. Sites of severe alveolar bone loss can be rehabilitated by implant fixed prosthesis with CAD/CAM system. This type of prosthesis can offer artificial gingival structure and can give more satisfying esthetics and functions, and as a result the patients were able to accept the outcome more fondly, which makes us less than hard to think that it can be a more convenient treatment for the practitioners.

A CASE REPORT ON THE SPACE MAINTAINER USING PRIMARY MOLAR HEMISECTION (유구치의 편측치아절제술을 이용한 공간유지장치)

  • Kim, Jun-Hyun;Lee, Jae-Ho;Kim, Seang-Oh;Shon, Heung-Ky
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.4
    • /
    • pp.776-780
    • /
    • 1997
  • Patient with alveolar abscess due to dental caries with severe alveolar bone loss, severe tooth mobility, root resorption need extraction of tooth because it is impossible to carry out pulp treatment and restoration by using conventional method. Early loss of primary molar might cause masticatory interference, extrusion of opposing tooth, problem in maintaining space and interference on eruption of permanent tooth. Especially, early loss of primary second molar before the eruption of permanent first molar might cause space closure by mesially erupted permanent first molar and impaction of second premolar. In such a case, distal shoe space maintainer and removable space regaining appliance was the first choice of treatment. But, distal shoe space maintainer need precise adaptation and might cause chronic inflammation if the oral hygiene is poor. In a case using removable space regaining appliance, patient's cooperation is most important. If the distal root of primary second molar is comparably sound and alveolar abscess with alveolar bone loss is localized at mesial root, hemisection should be carried out for precise guide to eruption of the permanent first molar, restoration of masticatory fuction and solution to the discomfort of the patient

  • PDF

Implant and root supported overdentures - a literature review and some data on bone loss in edentulous jaws

  • Carlsson, Gunnar E.
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.4
    • /
    • pp.245-252
    • /
    • 2014
  • PURPOSE. To present a literature review on implant overdentures after a brief survey of bone loss after extraction of all teeth. MATERIALS AND METHODS. Papers on alveolar bone loss and implant overdentures have been studied for a narrative review. RESULTS. Bone loss of the alveolar process after tooth extraction occurs with great individual variation, impossible to predict at the time of extraction. The simplest way to prevent bone loss is to avoid extraction of all teeth. To keep a few teeth and use them or their roots for a tooth or root-supported overdenture substantially reduces bone loss. Jaws with implant-supported prostheses show less bone loss than jaws with conventional dentures. Mandibular 2-implant overdentures provide patients with better outcomes than do conventional dentures, regarding satisfaction, chewing ability and oral-health-related quality of life. There is no strong evidence for the superiority of one overdenture retention-system over the others regarding patient satisfaction, survival, peri-implant bone loss and relevant clinical factors. Mandibular single midline implant overdentures have shown promising results but long-term results are not yet available. For a maxillary overdenture 4 to 6 implants splinted with a bar provide high survival both for implants and overdenture. CONCLUSION. In edentulous mandibles, 2-implant overdentures provide excellent long-term success and survival, including patient satisfaction and improved oral functions. To further reduce the costs a single midline implant overdenture can be a promising option. In the maxilla, overdentures supported on 4 to 6 implants splinted with a bar have demonstrated good functional results.

Radiographic evaluation of computer aided design/computer aided manufacturing (CAD/CAM) customized abutment of implant (CAD/CAM으로 제작된 임플란트 맞춤형 지대주의 방사선학적 평가)

  • Yun, Tae-Gyeong;Lee, Gyeong-Je;Chung, Chae-Heon;Kim, Hee-Jung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.3
    • /
    • pp.258-263
    • /
    • 2017
  • Purpose: In this study, the retrospective radiographic study is executed to evaluate amount of bone loss of various conditions in patients using customized abutment for 4 years of follow-up. Materials and methods: The subjects of this study were implant fixed dental prosthesis using CAD/CAM customized abutments. CAD/CAM customized abutment and fixed dental prosthesis were manufactured by the Prosthodontics Department of Chosun University Dental Hospital from August 1, 2011 to July 31, 2012. Radiological assessments were performed on the patients who were treated by the fixed prosthodontics. After each treatment, a retrospective study was performed for a total of 4 years at 3 months, 6 months, 1 year, 2 years, 3 years, and 4 years. Results: As a result of the study, the customized abutment using CAD/CAM showed less bone loss than the results of existing research. There was no statistically significant differences at alveolar bone loss between splinting group and non-splinting group (respectively 0.27 mm, 0.5 mm). Also, there were statistically significant differences at alveolar bone loss in mx. anterior, mx. posterior, mn. anterior and mn. posterior part (respectively 1.37 mm, 0.39 mm, 0.00 mm, 0.30 mm). Conclusion: The customized abutment using CAD/CAM showed less bone loss than the results of existing research, there were statistically significant differences at alveolar bone loss in implant positions.

Mechanisms underlying diabetes-induced bone loss

  • Ju Han Song;Xianyu Piao;Jeong-Tae Koh
    • International Journal of Oral Biology
    • /
    • v.49 no.2
    • /
    • pp.27-33
    • /
    • 2024
  • Diabetes, a chronic hyperglycemic condition, is caused by insufficient insulin secretion or functional impairment. Long-term inadequate regulation of blood glucose levels or hyperglycemia can lead to various complications, such as retinopathy, nephropathy, and cardiovascular disease. Recent studies have explored the molecular mechanisms linking diabetes to bone loss and an increased susceptibility to fractures. This study reviews the characteristics and molecular mechanisms of diabetes-induced bone disease. Depending on the type of diabetes, changes in bone tissue vary. The molecular mechanisms responsible for bone loss in diabetes include the accumulation of advanced glycation end products (AGEs), upregulation of inflammatory cytokines, induction of oxidative stress, and deficiencies in insulin/IGF-1. In diabetes, alveolar bone loss results from complex interactions involving oral bacterial infections, host responses, and hyperglycemic stress in periodontal tissues. Therapeutic strategies for diabetes-induced bone loss may include blocking the AGEs signaling pathway, decreasing inflammatory cytokine activity, inhibiting reactive oxygen species generation and activity, and controlling glucose levels; however, further research is warranted.

FINITE ELEMENT ANALYSIS OF STRESS PATTERNS ON PERIODONTIUM OF SPLINTED ABUTMENTSFOR DISTAL EXTENSION REMOVABLE PARTIAL DENTURE (후방연장 국소의치에서 지대치의 splinting에 따른 치주조직의 응력 변화에 관한 유한요소법적 연구)

  • Hwang, Jae-Woong;Chang, Ik-Tae;Kim, Kwang-Nam
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.2
    • /
    • pp.241-268
    • /
    • 1995
  • Splint therapy, the immobilization of teeth, has been done for patient's masticatory comforts and an adjunctive aid in periodontal therapy. Mandibular premolars are frequently splinted in many distal extension removable partial denture cases. But splinting is an extensive restoration that may not be conservative of tooth structure and may prove to be quite costly to the patient. The two dimensional finite element analysis method was used to determine the magnitude and mode of distribution of the stresses of the periodontal ligament and supporting alveolar bone when abutments with different periodontal supports were splinted and distal-extension removable partial denture was subjected to different loading schemes. The results were as follows : 1. When abutments were splinted, stresses moved from apico-distal to apico-mesial of terminal abutment on a vertical force and from disto-alveolar crest to apex on a distally directed force. But stresses were generally diminished on a mesially directed force. 2. As vertical bone loss was proceeding, most of stresses were transmitted to residual ridge and the rest of stresses were concentrated on apex of distal abutment. But these apical stresses were minimized when abutments were splinted. 3. As mesially inclined bone loss was proceeding, it seemed to be dangerous that many stresses were concentrated on the distal alveolar crest, especially in the distally directed load case. Abutments splinting decreased the alveolar crestal stresses but not enough. 4. For all vertical stresses were effectively decreased on splinting, stresses were concentrated as highly on apico-mesial area of distal abutment in distally directed load cases as the distal inclination of bone level was severe. 5. The directions and magnitudes of abutment movements were decreased with teeth splinting.

  • PDF

The effect of non-resorbable barrier membrane on the change of buccal and lingual alveolar bone in immediate implant placement into periapically infected extraction sockets (치근단 병소를 갖는 발치와에 즉시 임플란트 식립 시 비흡수성 차폐막이 치조골의 흡수에 미치는 영향에 관한 연구)

  • Shin, Seung-Yun;Yang, Seung-Min;Kye, Seung-Beom
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.1
    • /
    • pp.71-76
    • /
    • 2009
  • Purpose: Many researches showed loss of alveolar bone in fresh extraction socket and even in case of immediate implant placement. The aim of this study was to evaluate the effect of non-resorbable barrier membrane on the change of buccal and lingual alveolar bone in immediate implant placement into periapically infected extraction sockets. Materials and methods: Immediate implants were placed into artificially induced periapical lesion of mandibular premolars after complete debridement using buccal bone defect made by a 6mm trephine bur in 4 mongrel dogs. Before flap repositioning, a non-resorbable barrier membrane was placed on the buccal defect in the experimental group. No membrane was placed in the control group. In 12 weeks after placement, the dogs were sacrificed and undecalcified histologic specimens were prepared. The vertical distance from the smooth-rough surface interface(SRI) to gingiva, 1st bone contact and bone crest were measured in buccal and lingual side. The horizontal thicknesses of gingiva and bone at 0, 1, 2 and 3mm below SRI were measured. Results: The buccal bone was resorbed more than lingual bone in both groups and there was statistical significance(p<0.05). The distances from SRI to 1st bone contact were $2.45{\pm}2.35\;mm$ in experimental group and $4.49{\pm}3.10\;mm$ in control group. In all vertical level, lingual bone was thicker than buccal bone(p<0.05). Conclusion: Buccal bone was reduced more than lingual bone in immediate implant placement into periapically infected extraction sockets. Placement of non-resorbable barrier membrane reduced the buccal bone resorption. However there was no statistical significance.