• Title/Summary/Keyword: Aluminum film

Search Result 663, Processing Time 0.026 seconds

A Study on the Dependency of Pulsed-DC Sputtered Aluminum-doped Zinc Oxide Thin Films on the Reverse Pulse Time (Pulsed-DC 스퍼터링에서 Reverse Pulse Time에 따른 AZO 박막의 특성 변화에 관한 연구)

  • Ryu, Hyungseok;Zhao, Zhenqian;Kwon, Sang Jik;Cho, Eou Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.32-36
    • /
    • 2018
  • For various oxygen($O_2$) to argon(Ar) gas ratio, aluminum-doped zinc oxide(AZO) films were deposited for 3 min at different duty ratio by changing reverse pulse times. As the duty ratio increased, the thickness of the AZO film decreased and the sheet resistance increased. It can be concluded that When sputtering AZO Thin film, oxygen interfered with sputtering. When the reverse time was increased, the thickness of AZO was proportional to the real sputtering time and decreased. From the optical transmittance and sheet resistance, it was possible to obtain a higher figure of merits of AZO at a lower reverse pulse time. Even at the short reversed pulse time, it can be concluded that the accumulated charges on the AZO target are completely cleared. At a lower reverse pulse time, pulsed-DC sputtering of AZO is expected to be used instead of DC sputtering in the deposition of transparent conductive oxide(TCO) films without any degradation in thickness and structural/electrical characteristics.

Microstructural Analysis on Oxide Film of Al6061 Exposed to Atmospheric Conditions (대기 노출된 Al6061 알루미늄 합금 산화막에 대한 미세조직 분석)

  • Jo, Junyeong;Kwon, Daeyeop;Choi, Wonjun;Bahn, Chi Bum
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.5
    • /
    • pp.273-283
    • /
    • 2022
  • Al6061 aluminum alloy specimens were exposed to atmospheric conditions for maximum 24 months. 24-month exposure specimen showed some more frequent and larger size of corrosion products and pitting on the surface compared with the 12-month exposure specimens. The XRD examination revealed the dominant surface oxide phases of Al2O3 and Al(OH)3. The oxide thickness at uniform oxidation (or non-pitting) region was not much changed over exposure time. The 1.2 ㎛ deep oxygen penetration area was found in the 12-months exposed specimen near the thin uniform aluminum oxide film. The line-EDS was conducted through the penetration regions and non-penetrated grain boundary. There were signs of O and Si concentration through the penetration region, whereas non-penetration region showed no concentration of O or Si. It was confirmed that pitting is a more severe degradation mode in Al6061 (max. >4 ㎛ deep) compared with the uniform oxidation (max. ~200 nm deep) up to 24-months exposure.

Development of Surface Treatment for Hydrophobic Property on Aluminum Surface (알루미늄의 발수 표면처리 기술 개발)

  • Byun, Eun-Yeon;Lee, Seung-Hun;Kim, Jong-Kuk;Kim, Yang-Do;Kim, Do-Geun
    • Journal of Surface Science and Engineering
    • /
    • v.45 no.4
    • /
    • pp.151-154
    • /
    • 2012
  • A hydrophobic surface has been fabricated on aluminum by two-step surface treatment processes consisting of structure modification and surface coating. Nature inspired micro nano scale structures were artificially created on the aluminum surface by a blasting and Ar ion beam etching. And a hydrophobic thin film was coated by a trimethylsilane ($(CH_3)_3SiH$) plasma deposition to minimize the surface energy of the micro nano structure surface. The contact angle of micro nano structured aluminum surface with the trimethylsilane coating was $123^{\circ}$ (surface energy: 9.05 $mJ/m^2$), but the contact angle of only trimethylsilane coated sample without the micro nano surface structure was $92^{\circ}$ (surface energy: 99.15 $mJ/m^2$). In the hydrophobic treatment of aluminum surface, a trimethylsilane coated sample having the micro nano structure was more effective than only trimethylsilane coated sample without the micro nano structure.

A Study of Optical properties of Al6061 By plasma electrolytic oxidation surface treatment (플라즈마 전해 산화 표면처리 된 Al6061 소재의 광학적 특성연구)

  • Yu, Jae-In;Yun, J-S;Yun, Jae-Gon;Choi, Soon-Don;Yu, Jae-Yong;Jang, Ho-Kyeoung;Kim, Ki-Hong
    • Laser Solutions
    • /
    • v.17 no.2
    • /
    • pp.1-4
    • /
    • 2014
  • With the PEO(Plasma electrolytic oxidation) surface treatment, the oxide film of aluminum alloy is growing in a short time. The reflectance measurement to find the oxygen atoms in the oxide could be investigated. In order to form a thicker oxide film, the PEO surface treatment should be uniformly controlled in processing time.

  • PDF

Molecular Dynamics Study of the Energetic Aluminum Cluster Impact and Deposition (운동에너지를 가지는 알루미늄 덩어리 충돌 및 증착에 관한 분자동력학 연구)

  • 강정원;황호정
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.3
    • /
    • pp.283-288
    • /
    • 2001
  • We have investigated aluminum cluster deposition using a classical molecular dynamics simulations. We studied the variations of the cluster momentum and the impulse force during collisions, and found that the close-packed cluster impact has some of properties of the single particle collision and the linear atomic chain collisions. We also simulated the series of energetic cluster deposition with energy Per atom. When energy Per atom in cluster has some eV rather than very low, the intermixing occurred easily in growth film and we can obtain a good film without subsequent annealing process.

  • PDF

Characterization of Aluminum Oxide Thin Film Grown by Atomic Layer Deposition for Flexible Display Barrier Layer Application

  • Kopark, Sang-Hee;Lee, Jeong-Ik;Yang, Yong-Suk;Yun, Sun-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.746-749
    • /
    • 2002
  • Aluminum oxide thin films were grown on a poly ethylene naphthalate (PEN) substrate at the temperature of 100$^{\circ}C$ using atomic layer deposition method. The film showed very flat morphology and good adhesion to the substrate. The visible spectrum showed higher transmittance in the range from 400 nm to 800 nm than that of PEN. The water vapor transmission value measured with MOCON for 230nm oxide-deposited PEN was 0.62g/$m^2$/day @ 38$^{\circ}C$, while that of PEN substrate was 1.4g/$m^2$/day @ 38$^{\circ}C$.

  • PDF

A Study on the press warm forming of stainless-aluminum clad sheet metals (스테인레스-알루미늄 클래드 강판재의 프레스 온간 성형 연구)

  • 류호연;박건규;김종호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06b
    • /
    • pp.8-18
    • /
    • 1998
  • The effect of press warm forming in cylindrical deep drawing of stainless-aluminum clad sheet metals are examined . The temperature of die and blank holder is varied from room temperature to 20$0^{\circ}C$, while the punch is kept cooled during test to increase the fracture strength of workpiece on the punch corner area. Test materials chosen for experiments are STS304-Al050-STS304, STS304-A1050-STS430-, STS304 and Al050 metals and teflon film as a lubricant is used on both sides of a workpiece. The limit drawing ration as well as quality of drawn cups (distribution of thickness and hardness)are investigated and discussed.

  • PDF

Luminescent and Electrical Characterization of ZnS:Tb Thin-Film Electroluminescent Devices Using Multilayered Insulators

  • Kim, Yong-Shin;Kang, Jung-Sook;Yun, Sun-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.37-38
    • /
    • 2000
  • The ZnS:Tb thin-film electroluminescent devices were grown by atomic layer deposition with utilizing single-layer aluminum oxide and/or multilayered tantalum aluminum oxide, $Ta_xAl_yO$, as upper and lower insulating layers. These devices were investigated in terms of the luminescent and electrical characteristics. From this analysis, the devices using the $Ta_xAl_yO$ instead of $Al_2O_3$ were observed to have a lower threshold voltage for emission due to the higher relative dielectric constant of $Ta_xAl_yO$ insulators than that of the $Al_2O_3$ device. And there was a large amount of dynamic space charge generation in the phosphor of the device with the $Ta_xAl_yO$ insulators seemingly due to electron multiplication such as trap ionization.

  • PDF

Study on vertical wet etching of aluminum metal film for TFT application

  • Lee, Sang-Hyuk;Seo, Bo-Hyun;Lee, In-Kyu;Seo, Jong-Hyun;Lee, Kang-Woong;Jeon, Jae-Hong;Choe, Hee-Hwan;Ryu, Jong-Hyeok;Park, Byung-Woo;Chang, Dae-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1479-1482
    • /
    • 2009
  • Compared with tilt transfer wet station, vertical etching system has a variety of advantages that are 50% space savings, higher throughput, fairly good etch uniformity over an entire glass for thin film transistor application. The aim of the present work is to study on a vertical etching system to improve the process factors. The computational fluid dynamics analysis is used to demonstrate the change of the etch uniformity as a function of tilt angle of the glass substrate.

  • PDF

Analysis of the Light Environment in Model Greenhouse using Infrared Absorption Film as Shading Screen (적외선 흡수필름을 차광재로 사용한 모형 온실의 광환경 분석(농업시설))

  • 권혁진;김기성;김문기
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.340-345
    • /
    • 2000
  • This study was carried out to analyze the light and thermal environment in model greenhouse using infrared absorption film as shading screen and to compare with the case of no shading and using general shading screen such as aluminum foil-backed film, black polyethylene film and thermal blanket. PPFD(photosynthetic photon flux density) of inside the model greenhouse under infrared absorption film was increased by 22% than under general shading screen on the average. And temperature of inside air under infrared absorption film was 2$^{\circ}C$ lower than under general shading screen on the average. So, it is expected that infrared absorption film is useful as shading screen.

  • PDF