• Title/Summary/Keyword: Aluminum doped zinc oxide (AZO) film

Search Result 26, Processing Time 0.027 seconds

Influence of Surface Texturing on the Electrical and Optical Properties of Aluminum Doped Zinc Oxide Thin Films

  • Lee, Jaeh-Yeong;Shim, Joong-Pyo;Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.461-465
    • /
    • 2011
  • An aluminum doped zinc oxide (AZO) film for front contacts of thin film solar cells, in this work, were deposited by r.f. magnetron sputtering, and then etched in diluted hydrochloric acid solution for different times. Effects of surface texturing on the electro-optical properties of AZO films were investigated. Also, to clarify the light trapping of textured AZO film, amorphous silicon thin film solar cells were fabricated on the textured AZO/glass substrate and the performance of solar cells were studied. After texturing, the spectral haze at the visible range of 400 ~750 nm increased substantially with the etching time, without a change in the resistivity. The conversion efficiency of amorphous Si solar cells with textured AZO film as a front electrode was improved by the increase of short-circuit current density ($J_{sc}$), compared to cell with flat AZO films.

A Study on the Dependency of Pulsed-DC Sputtered Aluminum-doped Zinc Oxide Thin Films on the Reverse Pulse Time (Pulsed-DC 스퍼터링에서 Reverse Pulse Time에 따른 AZO 박막의 특성 변화에 관한 연구)

  • Ryu, Hyungseok;Zhao, Zhenqian;Kwon, Sang Jik;Cho, Eou Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.32-36
    • /
    • 2018
  • For various oxygen($O_2$) to argon(Ar) gas ratio, aluminum-doped zinc oxide(AZO) films were deposited for 3 min at different duty ratio by changing reverse pulse times. As the duty ratio increased, the thickness of the AZO film decreased and the sheet resistance increased. It can be concluded that When sputtering AZO Thin film, oxygen interfered with sputtering. When the reverse time was increased, the thickness of AZO was proportional to the real sputtering time and decreased. From the optical transmittance and sheet resistance, it was possible to obtain a higher figure of merits of AZO at a lower reverse pulse time. Even at the short reversed pulse time, it can be concluded that the accumulated charges on the AZO target are completely cleared. At a lower reverse pulse time, pulsed-DC sputtering of AZO is expected to be used instead of DC sputtering in the deposition of transparent conductive oxide(TCO) films without any degradation in thickness and structural/electrical characteristics.

AZO Transparent Electrodes for Semi-Transparent Silicon Thin Film Solar Cells (AZO 투명 전극 기반 반투명 실리콘 박막 태양전지)

  • Nam, Jiyoon;Jo, Sungjin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.401-405
    • /
    • 2017
  • Because silicon thin film solar cells have a high absorption coefficient in visible light, they can absorb 90% of the solar spectrum in a $1-{\mu}m$-thick layer. Silicon thin film solar cells also have high transparency and are lightweight. Therefore, they can be used for building integrated photovoltaic (BIPV) systems. However, the contact electrode needs to be replaced for fabricating silicon thin film solar cells in BIPV systems, because most of the silicon thin film solar cells use metal electrodes that have a high reflectivity and low transmittance. In this study, we replace the conventional aluminum top electrode with a transparent aluminum-doped zinc oxide (AZO) electrode, the band level of which matches well with that of the intrinsic layer of the silicon thin film solar cell and has high transmittance. We show that the AZO effectively replaces the top metal electrode and the bottom fluorine-doped tin oxide (FTO) substrate without a noticeable degradation of the photovoltaic characteristics.

Correlation Between Energy Gap and Defect Formation of Al Doped Zinc Oxide on Carbon Doped Silicon Oxide

  • Oh, Teresa;Kim, Chy Hyung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.207-212
    • /
    • 2014
  • Aluminum-doped zinc oxide (AZO) films were deposited on SiOC/Si wafer by an RF-magnetron sputtering system, by varying the deposition parameters of radio frequency power from 50 to 200 W. To assess the correlation of the optical properties between the substrate and AZO thin film, photoluminescence was measured, and the origin of deep level emission of AZO thin films grown on SiOC/Si wafer was studied. AZO formed on SiOC/Si substrates exhibited ultraviolet emission due to exciton recombination, and the visible emission was associated with intrinsic and extrinsic defects. For the AZO thin film deposited on SiOC at low RF-power, the deep level emission near the UV region is attributed to an increase of the variations of defects related to the AZO and SiOC layers. The applied RF-power influenced an energy gap of localized trap state produced from the defects, and the gap increased at low RF power due to the formation of new defects across the AZO layer caused by lattice mismatch of the AZO and SiOC films. The optical properties of AZO films on amorphous SiOC compared with those of AZO film on Si were considerably improved by reducing the roughness of the surface with low surface ionization energy, and by solving the problem of structural mismatch with the AZO film and Si wafer.

Experimental Study on Fabrication of AZO Transparent Electrode for Organic Solar Cell Using Selective Low-Temperature Atomic Layer Deposition (저온 선택적 원자층 증착공정을 이용한 유기태양전지용 AZO 투명전극 제조에 관한 실험적 연구)

  • Kim, Ki-Cheol;Song, Gen-Soo;Kim, Hyung-Tae;Yoo, Kyung-Hoon;Kang, Jeong-Jin;Hwang, Jun-Young;Lee, Sang-Ho;Kang, Kyung-Tae;Kang, Heui-Seok;Cho, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.577-582
    • /
    • 2013
  • AZO (aluminum-doped zinc oxide) is one of the best candidate materials to replace ITO (indium tin oxide) for TCOs (transparent conductive oxides) used in flat panel displays, organic light-emitting diodes (OLEDs), and organic solar cells (OSCs). In the present study, to apply an AZO thin film to the transparent electrode of an organic solar cell, a low-temperature selective atomic layer deposition (ALD) process was adopted to deposit an AZO thin film on a flexible poly-ethylene-naphthalate (PEN) substrate. The reactive gases for the ALD process were di-ethyl-zinc (DEZ) and tri-methyl-aluminum (TMA) as precursors and H2O as an oxidant. The structural, electrical, and optical characteristics of the AZO thin film were evaluated. From the measured results of the electrical and optical characteristics of the AZO thin films deposited on the PEN substrates by ALD, it was shown that the AZO thin film appeared to be comparable to a commercially used ITO thin film, which confirmed the feasibility of AZO as a TCO for flexible organic solar cells in the near future.

Effect of sputtering parameters and targets on properties of ZnO:Al thin films prepared by reactive DC magnetron sputtering (직류 반응성 sputtering법으로 제막된 ZnO:Al 박막의 물성에 미치는 증착조건 및 타겟의 영향)

  • 유병석;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.592-598
    • /
    • 1998
  • AZO(Aluminum doped Zinc Oxide) thin films were fabricated by reactive DC magnetron sputtering method using zinc metal target (Al 2%) and zinc oxide target ($Al_2O_3\;2%$) respectively. The intermediate condition with optimum transmittance and conductivity was obtained by controlling the sputtering parameters. Oxygen gas ratio for this condition was $0.5{\times}10^{-2}~1.0{\times}10^{-2}$ in oxide target and. In case of metal target, this optimum oxygen gas ratio at the applied power of 0.6 kW and 1.0 kW was 0.215~0.227 and 0.305~0.315, respectively. The resistivity of AZO film deposited was obtained $1.2~1.4{\times}10^{-3} {\Omega}{\cdot}$cm as deposited state regardless of target species.

  • PDF

The Increase of Photodiode Efficiency by using Transparent Conductive Aluminium-doped Zinc Oxide Thin Film (Aluminium-doped Zinc Oxide 투명전도막을 적용한 Photodiode의 수광효율 향상)

  • Jeong, Yun-Hwan;Jin, Hu-Jie;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.863-867
    • /
    • 2008
  • In this paper, to increase the light current efficiency of photodiode, we fabricated aluminum-doped zinc oxide(AZO) thin films by RF magnetron sputtering. AZO thin films were deposited at low temperature of 100 $^{\circ}C$ and different RF powers of 50, 100, 150 and 200 W due to selective process technology. Then the AZO thin films were annealed at 400 $^{\circ}C$ for 1 hr in vacuum ambient to increase crystalline. The lowest resistivity of 1.35 ${\times}$ $10^{-3}$ ${\Omega}cm$ and a high transmittance over 90 % were obtained under the conditions of 3 mTorr, 100 'c and 150 W. The optimized AZO thin films were deposited as anti-reflection coating on PN junction of silicon photodiode. It was confirmed by the result of $V_r-I_{ph}$ curve that the efficiency of photodiode with AZO thin film was enhanced 17 % more than commercial photodiode.

Fabrication of a Transparent Electrode for a Flexible Organic Solar Cell in Atomic Layer Deposition (ALD 공정을 이용한 플렉시블 유기태양전지용 투명전극 형성)

  • Song, Gen-Soo;Kim, Hyoung-Tae;Yoo, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.121.2-121.2
    • /
    • 2011
  • Aluminum-doped Zinc Oxide (AZO) is considered as an excellent candidate to replace Indium Tin Oxide (ITO), which is widely used as transparent conductive oxide (TCO) for electronic devices such as liquid crystal displays (LCDs), organic light emitting diodes (OLEDs) and organic solar cells (OSCs). In the present study, AZO thin film was applied to the transparent electrode of a channel-shaped flexible organic solar cell using a low-temperature selective-area atomic layer deposition (ALD) process. AZO thin films were deposited on Poly-Ethylene-Naphthalate (PEN) substrates with Di-Ethyl-Zinc (DEZ) and Tri-Methyl-Aluminum (TMA) as precursors and $H_2O$ as an oxidant for the atomic layer deposition at the deposition temperature of $130^{\circ}C$. The pulse time of TMA, DEZ and $H_2O$, and purge time were 0.1 second and 20 second, respectively. The electrical and optical properties of the AZO films were characterized as a function of film thickness. The 300 nm-thick AZO film grown on a PEN substrate exhibited sheet resistance of $87{\Omega}$/square and optical transmittance of 84.3% at a wavelength between 400 and 800 nm.

  • PDF

A Study on the High Quality and Low Cost Fabrication Technology of ZnO Thin Films for Solar Cell Applications (태양전지 응용을 위한 고품위 및 저가격 ZnO 박막 제조에 관한 연구)

  • Lee, Jae-Hyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.191-196
    • /
    • 2010
  • Aluminum doped zinc oxide (AZO) films have been prepared on Coming 7059 glass substrates by r.f. magnetron sputtering method. A powder target instead of a conventional sintered ceramic target was used in order to improve the utilization efficiency of the target and reduce the cost of the film deposition process. The influence of sputter pressure on the structural, electrical, and optical properties of AZO films were studied. The AZO films had hexagonal wurtzite structure with a preferred c-axis orientation, regardless of sputter pressure and target types. The crystallinity and degree of orientation was increased by increasing the sputter pressure. For higher sputtering pressures, a reduction of the resistivity was observed due to a increase on the mobility and the carrier concentration. The lowest resistivity of $6.5{\times}10^{-3}\;{\Omega}-cm$ and the average transmittance of 80% can be obtained for films deposited at 15 mTorr.

Electrical, Optical, and Electrochemical Corrosion Resistance Properties of Aluminum-Doped Zinc Oxide Films Depending on the Hydrogen Content

  • Cho, Soo-Ho;Kim, Sung-Joon;Jeong, Woo-Jun;Kim, Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.2
    • /
    • pp.116-125
    • /
    • 2018
  • Aluminum-doped zinc oxide (AZO) is a commonly used material for the front contact layer of chalcopyrite $CuInGaSe_2$ (CIGS) based thin film solar cells since it satisfies the requisite optical and electrical properties with low cost and abundant elemental availability. Low-resistivity and high-transmission front contacts have been developed for high-performance CIGS solar cells, and nearly meet the required performance. However, the durability of the cell especially for the corrosion resistance of AZO films has not been studied intensively. In this work, AZO films were prepared on Corning glass 7059 substrates by radio frequency magnetron sputtering depending on the hydrogen content. The electrical and optical properties and electrochemical corrosion resistance of the AZO films were evaluated as a function of the hydrogen content. With increasing hydrogen content to 6 wt%, the crystallinity, crystal size, and surface roughness of the films increased, and the resistivity decreased with increased carrier concentration, Hall mobility, oxygen vacancies, and $Zn(OH)_2$ binding on the AZO surface. At a hydrogen content of 6 wt%, the corrosion resistance was also relatively high with less columnar morphology, shallow pore channels, and lower grain boundary angles.