• Title/Summary/Keyword: Aluminum burning

Search Result 32, Processing Time 0.027 seconds

Comparison Study on Burning and Ignition Characteristics for Single Aluminum and Magnesium Particles (EDB에 의해 부양된 알루미늄과 마그네슘 단일 입자의 점화 및 연소 특성 비교 연구)

  • Lim, Ji-Hwan;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.311-316
    • /
    • 2010
  • The ignition and the burning characteristics of aluminum and magnesium particles ($30-110{\mu}m$ in diameter) isolated due to electrodynamic levitation were experimentally investigated. The burning time, the ignition delay time, the flame temperature, and the flame diameter were measured. The thermal radiation intensity was measured using the photomultiplier tube and the combustion history was monitored by high-speed cinematography. Two-wavelength pyrometry measured the temperature of the burning particles. The burning times of aluminum particles were measured approximately 5 to 8 times longer than those of magnesium particles. Exponents of $D^n$-law, for the burning rate of magnesium and aluminum particles of diameters less than $110{\mu}m$, are found to be 0.6 and 1.5, respectively. The instant of aluminum ignition is clearly distinguished with the ignition delay time little less than 10 ms, however the burning history of magnesium particle exhibits no distinct instant of the ignition. The ignition delay time of magnesium particle (less than $110{\mu}m$) were approximately shown in the range from 50 to 200 ns. The flame temperatures of single metal particles are lower than the boiling point of the oxide. The nondimensional flame diameters for magnesium are decreased with increasing of the diameter. The nondimensional flame diameters for aluminum are not changed significantly.

  • PDF

Combustion Characteristics of Al powder with Water Suspension (Al 분말과 Water 혼합물의 연소특성 연구)

  • Ki, Wan-Do;Kim, Kwang-Yeon;Shmelev, Vladimir;Cho, Yong-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.157-162
    • /
    • 2012
  • The basic study for combustion characteristics of micron-sized aluminum powder with water suspension was carried out. Under atmospheric pressure, the combustion characteristics of aluminum powder with water suspension was studied by adjust the equivalent ratio and the density of a mixture which effect on burning rate. Based on atmospheric pressure's result, the device for the combustion characteristics of aluminum powder with water suspension under high-pressure environment was developed. In the pressure range from 2 to 50 atm the effect of pressure to burning rate was same as the case of nano-aluminum with water suspension, but the pressure range from 50 to 70 atm the sharp increase in burning rate was observed. In the experiment of varying the equivalence ratio, the combustion did not proceed in the condition of excess oxidizer (eq = 1.5).

  • PDF

Modeling of the Ignition and Combustion of Single Aluminum Particle (단일 알루미늄 연료 입자의 점화 및 연소 모델링)

  • Yang, Hee-Sung;Lim, Ji-Hwan;Kim, Kyung-Moo;Lee, Ji-Hyung;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.187-192
    • /
    • 2008
  • A simplified model for an isolated aluminum particle burning in air is presented. Burning process consists of two stages, ignition and quasi-steady combustion (QSC). In ignition stage, aluminum which is inside of oxide film melts owing to the self heating called heterogeneous surface reaction (HSR) as well as the convective and radiative heat transfer from ambient air until the particle temperature reaches melting point of oxide film. In combustion stage, gas phase reaction occurs, and quasi-steady diffusion flame is assumed. For simplicity, 1-dimesional spherical symmetric condition and flame sheet assumption are also used. Extended conserved scalar formulations and modified Shvab-Zeldovich functions are used that account for the deposition of metal oxide on the surface of the molten aluminum. Using developed model, time variation of particle temperature, masses of molten aluminum and deposited oxide are predicted. Burning rate, flame radius and temperature are also calculated, and compared with some experimental data.

  • PDF

A Study on the Growth and Burning of Anodic Oxide Films on Al6061 Alloy During Anodizing at Constant Voltages (Al6061 합금의 정전압 아노다이징 피막의 형성거동 및 버닝에 대한 연구)

  • Moon, Sanghyuck;Moon, Sungmo;Song, Pungkeun
    • Journal of Surface Science and Engineering
    • /
    • v.53 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • In this study, growth and burning behavior of 6061 aluminum alloy was studied under constant anodic voltages at various temperatures and magnetic stirring rates in 20% sulfuric acid solution by analysing I-t curves, measuring thickness and hardness of aluminum anodic oxide (AAO) films, observations of surface and cross-sectional images of AAO films. AAO films were grown continuously at lower voltages than 18.5V but burning occurred when a voltage more than 19V was applied in 20% H2SO4 solution at 20±0.5℃ and 200 rpm of magnetic stirring. The burning was always related with an extremely large increase of anodic current density with anodizing time, suggesting that high heat generation during anodizing causes deteriorations of AAO films by chemical reaction with acidic solutions. The burning resulted in decreases of film thickness and hardness, surface color brightened and formation of porous defects in the AAO films. The burning voltage was found to decrease with increasing solution temperature and decreasing magnetic stirring rate. The decreased burning voltages seem to be closely related with increased chemical reactions between AAO films and hydrogen ions.

Reaction Characteristics Study of Aluminum-Copper(II) Oxide Composites Initiated by the Electrostatic Discharge (Aluminum-Copper(II) Oxide Composite의 정전기에 의한 반응 특성 연구)

  • Kim, Minjun;Kim, Sung Ho;Kim, Jayoung;Im, Yeseul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.591-598
    • /
    • 2018
  • The reaction characteristics of aluminum-copper(II) oxide composites initiated by the electrostatic discharge were studied as changing the aluminum particle size. Three different sizes of aluminum particles with nano-size copper(II)-oxide particle were used in the study. These composites were manufactured by two methods i.e. a shock-gel method and a self-assembly method. The larger aluminum particle size was, the less sensitive and less violent these composites were based on the electrostatic test. On the analysis of high speed camera about ignition appearances and burning time, the burning speed was faster when aluminum particle size was smaller.

An Experimental Study on Combustion Characteristics of Aluminum Composite Panels for Flame Retardant and General Materials (난연소재와 일반소재 알루미늄복합패널의 연소특성 비교에 관한 실험적 연구)

  • Min, Se-Hong;Yun, Jung-Eun;Kim, Mi-Suk
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.105-111
    • /
    • 2012
  • In this research, aluminum composite panels of the general materials and fire retardant materials as building claddings make researches about fire performance comparison analysis. Test methods of the small and medium cone calorimeter experiments and SBI (Single Burning Item) experiments was applied to the determination. As a result, in the experiments peak heat release rate cone calorimeter the general aluminum composite panel $1,293kW/m^2$ ($75kW/m^2$), flame-retardant aluminum composite panel $70kW/m^2$ ($75kW/m^2$) was measured. In the SBI experiments fire growth rate the general fire aluminum composite panel is approximately 743 W/s and the flame-retardant aluminum composite panel is approximately 97 W/s of the value were measured. Thus, a standards enactment are urgently required in this case it is used as building claddings of the aluminum composite panel by fire risk assessment.

Combustion Characteristics of HTPB/AP/Zr Propellant (HTPB/AP/Zr 추진제의 연소 특성)

  • Min Byoung-Sun;Hyun Hyung-Soo;Yim Yoo-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.61-65
    • /
    • 2005
  • In HTPB/AP propellants, zirconium(Zr) addition to formulation was shown to be less specific impulse than aluminum(Al) by the theoretical calculation because of the lower flame temperature and higher molecular weight of Zr oxide. It was found that the burning rate was faster with the finer size of Zr and the more content of $2{\mu}m$ Zr the faster burning rate is in HTPB/AP/Zr propellants caused by the more conduction energy transfer from Zr flame to the burning surface. Also the burning rate of HTPB/AP/Zr propellant could be reduced by addition of 150nm Al, depending on AP size distribution in formulation with Butacene and $1{\mu}m$ AP.

  • PDF

Combustion Characteristics of HTPB/AP/Zr Propellant (HTPB/AP/Zr 추진제의 연소 특성)

  • Min Byoung-Sun;Hyun Hyung-Soo;Yim Yoo-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.9-16
    • /
    • 2005
  • Zirconium(Zr) addition to formulation of HTPB/AP propellants, was shown to be less specific impulse than aluminum(Al) by the theoretical calculation because of the lower flame temperature and higher molecular weight of Zr oxide. It was found that the burning rate was faster with the finer size of Zr and the more content of $2{\mu}m$ Zr the faster burning rate is in HTPB/AP/Zr propellants caused by the more conduction energy transfer from Zr flame to the burning surface. Also the burning rate of HTPB/AP/Zr propellant could be reduced by addition of 150nm Al, depending on AP size distribution in formulation with Butacene and $1{\mu}m$ AP.

Aluminum particle ignition characteristics at high pressure condition up to 2 GPa (최대 2 GPa 고압 환경에서 알루미늄 입자의 점화 특성 연구)

  • Lee, Kyung-Cheol;Taira, Tsubasa;Koo, Goon Mo;Lee, Jae Young;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.5-8
    • /
    • 2013
  • The ignition of aluminum particles under high pressure and temperature conditions is studied. The laser ablation method is used to generate aluminum particles exposed to pressures ranging between 0.35 and 2.2 GPa. A continuous wave $CO_2$ laser is then used to heat surface of the aluminum target until ignition is achieved. We confirm ignition by a spectroscopic analysis of AlO vibronic band of 484 nm wavelength. The radiant temperature is measured with respect to various pressures for tracing of required heating energy for ignition. Then the ignition temperature is deduced from the radiant temperature using the thermal diffusion equation. The established ignition criteria for corresponding temperature and pressure can be used in the modeling of detonation behavior of heavily aluminized high explosives or solid propellants.

  • PDF

Parametric Studies on the Sensitivity of Single Isolated Aluminum Particle Combustion Modeling (알루미늄 입자 연소 지배인자의 민감도 해석)

  • Lee, Sang-Hyup;Ko, Tae-Ho;Yang, Hee-Sung;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.321-327
    • /
    • 2010
  • A simplified analytical modeling for micro-sized single metal particle combustion in air was conducted in the present study. The metal particle combustion consists of two distinct reaction regimes, ignition and quasi-steady burning, and the thermo-fluidic phenomena in each stage are formulated by virtue of the conservation and transport equations. Reliability of the model is shown by rigorous validation of the method with emphasis laid on the characterizing the commanding parameters. Effects of Initial particle size, initial oxide film thickness, convection, ambient pressure and temperature are examined and addressed with validation.

  • PDF