• Title/Summary/Keyword: Aluminium Extrusion

Search Result 36, Processing Time 0.018 seconds

The Influence of Effective Strain on the Globular Microstructure by SIMA Process for Semi-Solid Forging (반용융 단조를 위한 SIMA 공정에서 유효 변형률이 구상화 조직에 미치는 영향)

  • Park, H.J.;Lee, B.M.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.45-51
    • /
    • 1997
  • For semi-solid forging, it is necessarily required to prepare a workpiece with globular microstructure. Among several processes to obtain golbular microstructure, SIMA process is very simple and advantageous with respect to equipment. This paper presents the influence of effective strain on the globularization with aluminium 2024 alloy in cold working stage by SIMA process. Upsetting and forward extrusion are tested for cold working and induction heating is also carried out for reheating to obtain golbular microstructure. Microstructure is observed with an optical microscope. And finite element simulations to obtain effective strain in cold working stage are performed by using commercial finite element code, DEFORM.

  • PDF

Development of aluminium chassis parts applied for Extruforming (알루미늄 익스트루포밍 샤시부품 개발 현찰)

  • Jang, G.W.;Lee, W.S.;Kim, D.E.;Oh, K.H.;Kim, J.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.337-340
    • /
    • 2006
  • Aluminum extruded profiles have been mostly used only a few automotive parts until now, such as roof rail, sunroof frame and bumper beams. However, Aluminum Extru-form technology, which was recently developed by foreign advanced manufacturer, made it possible to apply the aluminum extruded profiles to suspension parts of passenger and RV cars. It could be obtained by optimized billet casting, extrusion and stretch bending technology. It was possible to have the excellent weight reduction and the competitive price comparing with conventional process of aluminum for automotive parts. Combining additional process technology such as machining and joining, the application can be extended to various automotive parts. We have developed high strength aluminum alloy and fabricated subframe and suspension arm by extruforming process.

  • PDF

Development of Lightweight & High Strength Bumper Beam of 7XXX Series Aluminum Alloy (경량 고강도 알루미늄 범퍼 빔 개발)

  • Lee W. S.;LEE M. Y.;Kim D. U.;Kang D. P.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.30-33
    • /
    • 2005
  • Although extruded aluminium bumper beam has been commonly used in advanced car makers, there are not so much precedent for it's localization. For the localization of aluminum bumper beam of 7XXX series, benchmarking, material modifications of 7XXX series aluminum alloy, section design of beam, impact analysis had been performed in this study. High fuel efficiency and weight reduction could be achieved by using aluminum bumper beam of which the weight is lighter than that of steel. Moreover, it is expected to reach higher recycling rate by substituting aluminum for steel.

  • PDF

Bodyshell strength analysis for standard EMU (표준전동차 개발을 위한 구조체의 강도해석)

  • 권태수;이호용;이관섭;최성규
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.455-463
    • /
    • 1998
  • The standardization urban transit project has been started by government and the Korean standard electrical railcar has been designed. The bodyshell of standard railcar is made of aluminium alloy. In the present paper, the design of its bodyshell is evaluated in the viewpoint of strength analysis. The loading condition is based on the 'Test Methods of Static Load for Body Structure of Electrical Multiple Unit', standard specification. The bodyshell of Korean standard EMU consist of longitudinal extrusion members which are double-skin structure type. The result in this paper is enough to satisfy strength requirement which is provided by standard specification. The comparison between actual experiment and analysis result will be presented in the next paper.

  • PDF

Lightweight Design of Car Bodies for Double Deck High-Speed Trains (2층 고속열차 차체 구조물의 경량화 설계)

  • Kang, SeungGu;Shin, KwangBok;Ko, TaeHwan;You, WonHee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • This paper describes a weight-reduction design method for the car bodies of a double deck high-speed train (service speed of 300 km/h). The method uses lightweight materials and a topology optimization technique. In this study, aluminum extrusions and sandwich composites were selected as the best materials to reduce the weight of the car body. The topology optimization technique was used to determine which car body parts could be made of the sandwich composites to achieve additional weight savings. The results of the topology optimization analysis showed that sandwich composites could be used for secondary car body members such as the roof and the second underframe. Also, it was found that a car body composed of aluminum extruded parts and sandwich composites could weigh up to 14% less than a car body made of only aluminum extrusions.

Effects of Drawing Parameters on Mechanical Properties of BAS121 Alloy Tubes for Heat-exchangers by High Frequency Induction Welding (고주파유도용접된 열교환기용 BAS121합금튜브의 기계적 특성에 미치는 인발조건의 영향)

  • Han Sang-Woo;Kim Byung-Il;Lee Hyun-Woo;Chon Woo-Young;Gook Jin-Seon
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.851-856
    • /
    • 2004
  • The aim of this study is to investigate the optimum drawing parameter for BAS121 welded tubes. The BAS121 aluminium alloy tubes with 25 mm in external diameter and 1.3 mm in thickness for heat-exchangers were manufactured by high frequency induction welding with the V shaped convergence angle $6.5^{\circ}$ and power input 55 kW. With increasing the reduction of area ($13,\;21\%$) by drawing, tensile strength was increased and elongation was decreased. With increasing the reduction of area by drawing, hardness in weld metal increased rapidly, while that of base metal increased slowly. In the specimen with the outer diameter smaller than 22 mm, hardness of weld metal was higher than that of base metal. The optimum drawing parameter of area reduction in BAS121 alloys was estimated about $13\%$ because of the work hardening of welds.