• Title/Summary/Keyword: Alumina Powder

Search Result 413, Processing Time 0.024 seconds

Effect of Frit Content on Microstructure and Flexural Strength of Porous Frit-Bonded Al2O3 Ceramics (Frit 함량이 다공질 Frit-Bonded 알루미나 세라믹스의 미세조직과 꺾임강도에 미치는 영향)

  • Lim, Kwang-Young;Kim, Young-Wook;Song, In-Hyuck;Kim, Hai-Doo;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.529-533
    • /
    • 2010
  • Porous frit-bonded alumina ceramics were fabricated using alumina and frit as raw materials. The effects of frit content and sintering temperature on microstructure, porosity, and flexural strength were investigated at low temperature of $750{\sim}850^{\circ}C$. Increased addition of frit content or higher sintering temperature resulted in improved flexural strength of porous frit-bonded alumina ceramics. It was possible to produce frit-bonded alumina ceramics with porosities ranging from 35% to 40%. A maximum strength of 52MPa was obtained at a porosity of ~38% when 90 wt% alumina and 10 wt% frit powders were used.

The Characterization and Sintering Behavior of Alumina Powder Prepared by Heat-treatment of Artificial Marble Waste Containing $Al(OH)_3$ Powder ($Al(OH)_3$ 함유(含有) 인조대리석폐기물(人造大理石廢棄物)로부터 제조(製造)된 알루미나 분말(粉末)의 특성(特性) 및 소결거동(燒結擧動) 연구(硏究))

  • Ryu, Sung-Soo;Seo, Sung-Gyu;Kim, Hyung-Tae;Kim, Hyeong-Jun;Park, Jun-Gyu;Yang, Jae-Gyu
    • Resources Recycling
    • /
    • v.18 no.2
    • /
    • pp.69-76
    • /
    • 2009
  • Alumina powder was prepared from heat-treatment of artificial marble waste fine aggregate containing $Al(OH)_3$ for the purpose of the feasibility of its recycling. Artificial marble waste was heat-treated between $500^{\circ}C$ and $1000^{\circ}C$ and XRD, BET surface area, BJH pore size distribution and adsorption of As were analyzed for heat-treated powder. It was found that the adsorption efficiency of As was significantly affected by phase composition of alumina powder rather than its physical characteristic. Heat-treated powder compact was sintered to produce the pellet. Alumina pellet with porosity more than 60% could be obtained after sintering below $1200^{\circ}C$ and also the addition of glass powder as a sintering aid had a positive effect on lowering sintering temperature, led to the high porosity near 60% and adsorption of As over 60% even at $900^{\circ}C$.

Preparation of Alumina Ceramics by Pressureless Powder Packing Forming Method: (I) Development of Pressureless Powders Packing Forming Method and Characterization of Green Body (무가압 분말 충전 성형법을 이용한 알루미나 세라믹스의 제조: (I) 무가압 분말 충전 성형법 개발 및 성형체 특성 관찰)

  • 박정현;성재석;이상진
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.1
    • /
    • pp.31-38
    • /
    • 1994
  • To overcome the demerit of conventional forming method, new forming method, pressureless powder packing forming method, was investigated. This technique is performed by powder packing followed by the infiltration of binder solution. Various alumina powders were used as starting materials and the powders showing good packing condition through powder packing experiment were chosen. The green densities prepared by this new forming method with these powders were lower than those of specimens by pressing method, but, nearly same density was obtained in case of green body prepared with the powders having high packing density. The distribution of binder in a green body was homogeneous and it was possible to a complex shape form by this forming method.

  • PDF

Synthesis of YAG:Ce3+ Phosphor Powders by Polymer Solution Route and Alumina Seed Application (폴리머용액법 및 알루미나 seed를 도입한 YAG:Ce3+ 형광체 분말 합성)

  • Kim, Yong-Hyeon;Lee, Sang-Jin
    • Journal of Powder Materials
    • /
    • v.20 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • $YAG:Ce^{3+}$ phosphor powders were synthesized using a $Al_2O_3$ seed (average particle size: 5 ${\mu}m$) by the polymer solution route. PVA solution was added to the sol precursors consisting of the seed powder and metal nitrate salts for homogeneous mixing in atomic scale. All dried precursor gels were calcined at $500^{\circ}C$ and then heated at $1400^{\circ}C{\sim}1500^{\circ}C$ in $N_2/H_2$ atmosphere. The final powders were characterized by using XRD, SEM, PSA, PL and PKG test. All synthesized powders were crystallized to YAG phase without intermediate phases of YAM or YAP. The phosphor properties and morphologies of the synthesized powders were strongly dependent on the PVA content. Finally, the synthesized $YAG:Ce^{3+}$ phosphor powder heated at $1500^{\circ}C$, which is prepared from 12:1 PVA content and has an average particle size of 15 ${\mu}m$, showed similar phosphor properties to a commercial phosphor powder.

Tribological Properties of Alumina/Graphite Composites (Alumina/graphite 복합체의 마찰마모 특성)

  • 백용혁;정종인;박용갑;김주영
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.4
    • /
    • pp.380-386
    • /
    • 1997
  • The tribological properties of ceramics are very important in the application to engineering ceramic parts such as seal rings, pump parts, thread guides, and so on. In this study, the effects of graphite addition on the mechanical and tribological properties of alumina/graphite composites were investigated. The composites were prepared by the adding of graphite powder to the mixture of Al2O3, talc and calcium carbonate. Bending strength, water absorption, friction coefficient, the amount of worn out material at a certain time, and maximum surface roughness(Rmax) of the prepared composites were measured. Crystalline phases and microstructure were examined with XRD and SEM. The melt of Al2O3-CaO-MgO-SiO2 system was shown over 10 vol% graphite composition. As the amount of the graphite is increased, needle like crystals of mullite were formed and grown. We obtained the good properties of friction coefficients and wear resistance at the powder composition containing 15 vol% of graphite.

  • PDF