• Title/Summary/Keyword: Alumina Ceramic

Search Result 883, Processing Time 0.027 seconds

Fabrication of Porous Al2O3 Ceramics Using Thermoplastic Polymer (열가소성 고분자를 이용한 다공질 알루미나의 제조)

  • 이상진;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.513-517
    • /
    • 2004
  • Porous alumina ceramics with aligned plate-shaped pores were fabricated by using thermoplastic microsphere in order to show the anisotropy in thermal conductivity. The mixed powder of alumina and microsphere was pressed under 15 MPa till 20$0^{\circ}C$ to deform polymer into platelet-shape and sintered at 1,00$0^{\circ}C$ for 1 h. The sintered specimen with 10 wt% microsphere has 45.3% porosity and the bending strength of 44 MPa. The microstructural investigation confirmed the pore structure of platelet-shape, the thermal conductivities for vertical and parallel directions are 3.803 W/mK and 7.818 W/mK, respectively, the ratio between two directions exceeds 2.

Resistance of Alkali Activated Slag Cement Mortar to Sulfuric Acid Attack (알칼리 활성화 슬래그 시멘트 모르타르의 내황산성)

  • Min, Kyung-San;Lee, Seung-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.11
    • /
    • pp.633-638
    • /
    • 2007
  • The setting time of alkali activated slag cement tends to be much faster than ordinary Portland cement, and its compressive strength had been higher from the 1 day but became lower than that of the cement on the 28 days. According to the results of the surface observation, weight loss, compressed strength, and erosion depth tests on the sulphuric acid solution. It has been drawn that alkali activated slag cement has a higher sulphate resistance than ordinary Portland cement, and in particular, the alkali activated slag cement added 5 wt% alumina cement has little deterioration on the sulphuric acid solution. The reason why the alkali activated slag cement has higher sulphate resistance than other hardened cement pastes is that it has no $Ca(OH)_2$ reactive to sulphate ion, and there is little $CaSO_4{\cdot}2H_2O$ production causing volume expansion, unlike other pastes. And it is supposed that $Al(OH)_3$ hydrates with high sulphate resistance, which is produced by adding the alumina cement increases the sulfate resistance.

Characteristics of Alumina-Supported TiO2 Composite Ultrafiltration Membranes Prepared by the Sol-Gel Method (Sol-Gel 법으로 제조한 알루미나 담체의 $TiO_2$ 복합 한외여과막의 특성)

  • 현상훈;최영민
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.2
    • /
    • pp.107-118
    • /
    • 1992
  • Alumina supports for TiO2 ultrafiltration membrane coating were prepared by presintering disk-type preforms at 140$0^{\circ}C$. These supports showed uniform microstructures which had the apparent porosity of 40%, the pore size distribution in the range of 0.1~0.5${\mu}{\textrm}{m}$, and the water flux of 1400ι/$m^2$.h at the pressure difference of 10 atm. The optimum pH and concentration of the TiO2 sol for coating were 0.8 and 1.0 wt%, respectively, and sol particles were identified as rutile forms of 20 nm size. Crack-free alumina-supported rutile TiO2 membranes could be prepared through well controlled drying and heating the gel layer coated by the sol-gel dipping. The pore size of the TiO2 membranes heat-treated at 50$0^{\circ}C$ for 2 hrs was 30~80$\AA$, and their thickness varied from 1.1 to 3.8 ${\mu}{\textrm}{m}$ in accordence with the dipping time (4~40 min). The flux of water through this composite membrane at 10 atm was found to be in the range from 800 to 1100ι/$m^2$.hr depending on the dipping time (10~40 min). The membrane thickness increased linearly with the square root of the dipping time and the slope was 0.62 ${\mu}{\textrm}{m}$/{{{{ SQRT { min} }}.

  • PDF

Themal Fatigue Behavior of Alumina Ceramics (알루미나 세라믹스의 열피로 거동)

  • 정우찬;한봉석;이홍림;이형직
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1094-1100
    • /
    • 1998
  • The thermal fatigue behavior of alumina ceramics was investigated by water quenching method. Single-quench thermal shock tests were performed to decide the critical thermal shock temperature difference ($\Delta$Tc) which was found to be 225$^{\circ}C$ Cyclic thermal shock fatigue tests were performed at temperature diff-erences of 175$^{\circ}C$, 187$^{\circ}C$ and 200$^{\circ}C$ respectively. After cyclic thermal shock fatigue test the distributions of retained strength and crack were observed. Retained strength was measured by four point bending method and crack observation method bydye penetration. In terms of the retained strength distribution the critical number of thermal shock cycles(Nc) were 7 for $\Delta$T=200$^{\circ}C$, 35 for $\Delta$T=187$^{\circ}C$ and 180for $\Delta$T=175$^{\circ}C$ respec-tively. In terms of the crack observation the critical number of thermal shock cycles were 5 for $\Delta$T==200$^{\circ}C$ 20 for $\Delta$T==187$^{\circ}C$ and 150 for $\Delta$T=175$^{\circ}C$ respectively. The difference of Nc investigated by two different methods is due to the formation of the longitudinal cracks which had no effect on the four point bending strength. Therefore the thermal fatigue behavior of alumina ceramics could be more accurately described by the crack observation method than the retained strength measurement method.

  • PDF

Hydroxyapatite Formation on Crystallized Bioactive Glass Coat on Alumina (알루미나에 코팅된 생체활성유리의 결정화에 따른 수산화 아파타이트 형성)

  • 이은성;지상수;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.255-261
    • /
    • 2003
  • Alumina glazed with a bioactive glass reacted in Simulated Body Fluids(SBF) to investigate the behavior of hydroxyapatite formation on the glass coat layer. Various crystalline phases were found depending on the firing temperatures when the bioactive glass coat was heat-treated. The glass coat was crystallized into ${\beta}$-wollastonite and apatite when fired at 1100$^{\circ}C$, and ${\alpha}$-wollastonite and apatite when fired at 1200$^{\circ}C$. Those samples reacted in SBF, and it is observed that hydroxyapatite developed on the surface of the crystallized glaze. Its formation was much easier in the sample with ${\alpha}$-wollastonite than with ${\beta}$-wollastonite. This is because that the ${\alpha}$-wollastonite dissolves more easily than ${\beta}$-wollastonite does in SBF.

Influence of the Electrical Parameters on the Fabrication of Oxide Layers on the Surface of Al-1050 by a Plasma Electrolytic Process (플라즈마 전해 산화법에 의한 Al-1050 표면상의 산화막 제조에 미치는 전기적 변수의 영향)

  • Nam, Kyung-Su;Song, Jeong-Hwan;Lim, Dae-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.498-504
    • /
    • 2012
  • Oxide layers were prepared by an environmentally friendly plasma electrolytic oxidation (PEO) process on an Al-1050 substrate. The electrolyte for PEO was an alkali-based solution with $Na_2SiO_3$ (8 g/L) and NaOH (3 g/L). The influence of the electrical parameters on the phase composition, microstructure and properties of the oxide layers formed by PEO were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The voltage-time responses were recorded during various PEO processes. The oxides are composed of two layers and are mainly made of ${\alpha}$-alumina, ${\gamma}$-alumina and mullite phases. The proportion of each phase depends on various electrical parameters. It was found that the surface of the oxides produced at a higher current density and Ia/Ic ratio shows a more homogeneous morphology than those produced with the electrical parameters of a lower current density and lower Ia/Ic ratio. Also, the oxide layers formed at a higher current density and higher Ia/Ic ratio show high micro-hardness levels.

A Study on the Friction and Wear Characteristics with Purity on $AL_{2}O_{3}$ Ceramic ($AL_{2}O_{3}$ 세라믹의 순도에 따른 마찰 마모 특성 연구)

  • Jeon Chan-Yeal;Oh Seong-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.5
    • /
    • pp.439-445
    • /
    • 2005
  • The tribological properties of ceramics are very important in the application to engineering ceramic parts such as seal rings, pump parts, meter parts, and so on. In this study, the effects of each other purity on the mechanical and tribological properties of alumina and zirconia ceramics were investigated. Sliding distance, sliding speed, contact load. friction coefficient, the amount of worn out material at a certain time, and the prepared composites were measured. Crystalline phases and microstructure were examined with XRD and SEM. We obtained the good properties of friction coefficient and wear resistance at the purity 99.7$\%$ of alumina. However, The purity 95$\%$ were great at the wear amount of worn out material.

  • PDF

NiO(Co0.25Mn0.75)2O3 and BaSrTiO3 thick films on alumina substrate as temperature and humidity ceramic multisensors

  • Oh, Young-Jei;Lee, Deuk-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.343-348
    • /
    • 2009
  • $NiO{\cdot}(Co_{0.25}Mn_{0.75})_2O_3$(Mn-Ni-Co) and $Ba_{0.5}Sr_{0.5}TiO_3$(BST) thick films were screen printed on Pt patterned alumina substrate to investigate the effects of sintering temperature on humidity and temperature sensing properties of ceramic sensors. A raise in sintering temperature increased resistance and B constant of the Mn-Ni-Co temperature sensor. This may have derived from the synergic effects of the reduction in charge carriers caused by the substitution of Co for Mn as well as the formation of microcracks from the difference in thermal expansion coefficients. Dependence of resistance on humidity of the Mn-Ni-Co temperature sensor, however, was not found. BST films sintered at temperatures in the range of $1100^{\circ}C$ to $1150^{\circ}C$ showed excellent humidity sensing properties. The BST humidity sensor was faster in its response than the Mn-Ni-Co temperature sensor. The humidity sensor, however, proved to be unstable under various temperatures, suggesting a need for a temperature stabilizing device. In contrast, the Mn-Ni-Co temperature sensor was stable under humid conditions.

A sintering Behavior of Glass/Ceramic Composite used as substrate in High Frequency Range (고주파대역에서 기판으로 쓰이는 Glass/Ceramics Composite의 소결거동)

  • 이찬주;김형준;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.302-307
    • /
    • 2000
  • The objective of this study was to investigate the sintering behavior, crystallization characteristic of glass-ceramic and optimal sintering condition on the glass/ceramic composite for fabricating substrate of LTCC. Glass/ceramic composite was made from alumina powder and glass frit, which was composed of SiO2-TiO2-RO-PbO/(R: Ba, Sr, Ca), and was sintered for 0, 30, 60minutes in the temperature range from 700$^{\circ}C$ to 1000$^{\circ}C$. Properties of frit and glass/ceramic compsoite were analyzed by DTA, XRD, SEM and Network Analyzer and so on. Main sintering mechanism was densification occurred above 730$^{\circ}C$ by viscous flow and crystallization starting about 780$^{\circ}C$ affected sintering also. So viscous flow was affected by sintering temperature, duration time, and creation of crystallization phase etc. From this study, it was possible to fabricate glass/ceramic composite by changing sintering temperature and duration time.

  • PDF

Thermal Expansion and Dielectric Properties of CaO-ZnO-B2O3-SiO2 Glass-Added Al2O3 Composites for LTCC Applications

  • Byeon, Tae-Hun;Park, Hyo-Sung;Shin, Hyun-Ho;Yoon, Sang-Ok;Oh, Chang-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.4
    • /
    • pp.325-328
    • /
    • 2010
  • Varying quantities of a high-thermal-expansion glass, 50CaO-20ZnO-$20B_2O_3-10SiO_2$ (CZBS), were added to alumina and sintered at $875^{\circ}C$ for 2 h for low temperature co-firing ceramic (LTCC) applications. As the amount of glass addition increased from 40 wt% to 70 wt%, the apparent density of the sintered product increased from 88.8% to 91.5%, which was also qualitatively confirmed by microstructural observation. When the glass addition was very high, e.g., 70 wt%, an apparent formation of secondary phases such as $CaZn_2AlZnSiAlO_7$, $Ca_2Al(AlSi)O_7$, $Ca_2Al_2SiO_7$, $Ca_2ZnSi_2O_7$ and ZnO, was observed. Both the dielectric constant and the coefficient of thermal expansion increased with the glass addition, which was qualitatively consistent with the analytical models, while the experimental values were lower than the predicted ones due to the presence of pores and secondary phases.