• 제목/요약/키워드: Alumina Ceramic

Search Result 883, Processing Time 0.024 seconds

Microstructural Aspects of Crack Propagation in All-Ceramic Materials (전부도재관용 도재의 미시적 균열전파 양상)

  • 김효성;최규형;정회웅;원대희;이민호;배태성
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.433-441
    • /
    • 1998
  • This study was performed to evaluate the effects of surface flaw on the fracture of all-ceramic materials. A feldspathic porce lain of VMK68, a cashable ceramic of IPS-Empress, and an alumina-glass composite of In-Ceram were used. Specimens were prepared as 12$\times$3$\times$1mm in dimensions, and a Vickers-produced indentation crack was made at the center of the tensile surface. Test specimens were immersed in dlstilled water and In oil, which were broken under a crosshead speed of 0.05 mm/min by 3-point bend test at 37$^{\circ}C$. The characteristic patterns of Vickers indentation and fracture surfaces were examined by an optical microscope and a scanning electron microscope. The fracture surfaces of the VMK68 and the IPS-Empress showed a median crack pattern at the fracture origin and indicated a tendency to cleavage hackle. The fracture surface of the alumina-glass composite, In-Ceram, showed a Palmqvist crack pattern at the fracture origin and indicated a tendency of toughening by the frictional Interlocking between the microstructurally rough fracture surfaces.

  • PDF

Effects of Fabrication Variables and Microstructures on the Compressive Strength of Open Cell Ceramics (개방셀 세라믹스의 압축강도에 대한 제조공정변수 및 미세구조의 영향)

  • 정한남;현상훈
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.954-964
    • /
    • 1999
  • The effect of fabrication variables and microstructures on the compressive strength of open cell alumina zirconia and silicon nitride ceramics fabricated by polymeric sponge method was investigated. Bulk density and compressive strength of open cell ceramics were mainly affected by coating characteristics of ceramic slurry on polymeric sponge that controlled a shape thickness and defect of the struts. Sintering temperature was optimized for enhancement of strut strength and compressive strength of open cell ceramics. Relative density and compressive strength behaviors were relatively well matched with the predicted values. Open cell ceramics of lower relative density below 0.1 prepared by first relatively well matched with the predicted values. Open cell ceramics of lower relative density below 0.1 prepared by first coating of ceramic slurry had thin triangular prismatic struts that were often broken or longitudinally cracked. With an application of second coating of slurry shape of struts was transformed into thickner cylindrical one and defects in struts were healed but the relative density increased over 0.2 Open cell zirconia had both the highest bulk density and compressive strength and alumina had the lowest compressive strength while silicon nitrides showed relatively high compressive strength and the lowest density. Based upon the analysis open cell silicon nitride was expected to be one of potential structural ceramics with light weight.

  • PDF

Effect of Water and Aluminum Sulfate Mole Ratio on Pore Characteristics in Synthesis of AlO(OH) Nano Gel by Homogeneous Precipitation (균일침전에 의한 AlO(OH) 나노 겔 합성에서 물/황산알루미늄의 몰 비가 세공특성에 미치는 영향)

  • Choe, Dong-Uk;Park, Byung-Ki;Lee, Jung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.564-568
    • /
    • 2006
  • AlO(OH) nano gel is used in precursor of ceramic material, coating material and catalyst. For use of these, not only physiochemical control for particle morphology, pore characteristic and peptization but also studies of synthetic method for preparation of advanced application products were required. In this study, AlO(OH) nano gel was prepared through the aging and drying process of aluminum hydroxides gel precipitated by the hydrolysis reaction of dilute NaOH solution and aluminum sulfate solution. In this process, optimum synthetic condition of AlO(OH) nano gel having excellent pore volume as studying the effect of water and aluminum sulfate mole ratio on gel precipitates has been studied. Water and aluminum sulfate mole ratio brought about numerous changes on crystal morphology, surface area, pore volume and pore size. Physiochemical properties were investigated as using XRD, TEM, TG/DTA, FT-IR, and $N_2$ BET method.

Application of ANN modeling for oily wastewater treatment by hybrid PAC-MF process

  • Abbasi, Mohsen;Rasouli, Yaser;Jowkar, Peyman
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.285-292
    • /
    • 2018
  • In the following study, Artificial Neural Network (ANN) is used for prediction of permeate flux decline during oily wastewater treatment by hybrid powdered activated carbon-microfiltration (PAC-MF) process using mullite and mullite-alumina ceramic membranes. Permeate flux is predicted as a function of time and PAC concentration. To optimize the networks performance, different transfer functions and different initial weights and biases have been tested. Totally, more than 850,000 different networks are tested for both membranes. The results showed that 10:6 and 9:20 neural networks work best for mullite and mullite-alumina ceramic membranes in PAC-MF process, respectively. These networks provide low mean squared error and high linearity between target and predicted data (high $R^2$ value). Finally, the results present that ANN provide best results ($R^2$ value equal to 0.99999) for prediction of permeation flux decline during oily wastewater treatment in PAC-MF process by ceramic membranes.

The Characterization and Sintering Behavior of Alumina Powder Prepared by Heat-treatment of Artificial Marble Waste Containing $Al(OH)_3$ Powder ($Al(OH)_3$ 함유(含有) 인조대리석폐기물(人造大理石廢棄物)로부터 제조(製造)된 알루미나 분말(粉末)의 특성(特性) 및 소결거동(燒結擧動) 연구(硏究))

  • Ryu, Sung-Soo;Seo, Sung-Gyu;Kim, Hyung-Tae;Kim, Hyeong-Jun;Park, Jun-Gyu;Yang, Jae-Gyu
    • Resources Recycling
    • /
    • v.18 no.2
    • /
    • pp.69-76
    • /
    • 2009
  • Alumina powder was prepared from heat-treatment of artificial marble waste fine aggregate containing $Al(OH)_3$ for the purpose of the feasibility of its recycling. Artificial marble waste was heat-treated between $500^{\circ}C$ and $1000^{\circ}C$ and XRD, BET surface area, BJH pore size distribution and adsorption of As were analyzed for heat-treated powder. It was found that the adsorption efficiency of As was significantly affected by phase composition of alumina powder rather than its physical characteristic. Heat-treated powder compact was sintered to produce the pellet. Alumina pellet with porosity more than 60% could be obtained after sintering below $1200^{\circ}C$ and also the addition of glass powder as a sintering aid had a positive effect on lowering sintering temperature, led to the high porosity near 60% and adsorption of As over 60% even at $900^{\circ}C$.

EFFECT OF SURFACE TREATMENTS OF ZIRCONIA CERAMIC ON THE BOND STRENGTH OF RESIN CEMENTS (Zirconia ceramic의 표면처리 방법이 레진시멘트의 결합강도에 미치는 영향)

  • Kim, Chang-Hun;Jeon, Young-Chan;Jeong, Chang-Mo;Lim, Jang-Seop
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.4
    • /
    • pp.386-396
    • /
    • 2004
  • Statement of problem: It is not clear how to make a stable bonding between zirconia ceramic and resin cement. And the study about surface treatment of zirconia ceramic or bonding resin cement are not enough. Purpose: To measure and compare the shear bond strength of some resin cements on zirconia ceramic after different surface treatments. Material and method: 48 ceramic discs were made of 3 ceramic materials, zirconia ceramics (Zi-Ceram), heat-pressed ceramics (IPS Empress 2) and slip cast alumina ceramics (In-Ceram). According to the surface treatments of ceramic specimens and resin cements, specimens were classified into 6 groups and each group was composed of 8 specimens. For the surface treatment of Zi-Ceram group (test group), sandblasting and diamond bur preparation were applied and Superbond C&B and Panavia F were bonded respectively. For IPS Empress 2 group (control group), Variolink II was bonded after sandblasting, acid etching, silanization and for In-Ceram ALUMINA group (control group), Panavia F was bonded after sandblasting. After storing specimens in distilled water for 24 hours, the shear bond strength was measured by the universal testing machine. Results and conclusion: 1. Zi-Ceram group with Superbond C&B cement showed higher bond strength than with Panavia F cement regardless to the surface treatments (p<0.05). 2. In Zi-Ceram group with Superbond C&B cement, sandblasting treatment group (12.1MPa) showed higher bond strength than diamond bur treatment group (7.7MPa) (p<0.05). In Zi-Ceram group with Panavia F cement, there were no significant differences in the bond strength according to the surface treatments (p>0.05). 3. Zi-Ceram group with sandblasting and Superbond C&B cement (12.1MPa) showed the highest bond strength. The bond strength of this group was not significantly different from In-Ceram ALUMINA group (10.4MPa) (p>0.05) and lower than IPS Empress 2 group (15.9MPa) (p<0.05).

The Behaviour of Ru Based Thick Film Resistor as a Comonent of LCR Network (LCR Network을 구성하는 Ru계 후막저항계의 거동)

  • 박지애;이홍림;문지웅;김구대;이동아;손용배
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.3
    • /
    • pp.233-240
    • /
    • 1997
  • The Ru-based thick film resistor(TFR) for sintering at 90$0^{\circ}C$ was synthesized to prepare the LCR net-work. These compositions of pyrochlore could be prepared by decreasing the amount of PbO and increasing alumina and silica contents of glass frit. In this study, the sheet resistances of the TFTs. which sint-ered at 90$0^{\circ}C$ after printing on alumina substrate, the sheet resistances of the TFRs on inductor and capa-citor substrate and the interphase between TFR and substrate were observed. And the changes of the sheet resistance were obtained with the contents of RuO2. In case of the TFR sintered at 90$0^{\circ}C$, the sheet resis-tances on alumina substrates were in the range of 103~106$\Omega$/$\square$, but the sheet resistances of TFR on in-ductor and capacitor substrate were not obtained.

  • PDF

Decomposition Characteristics of 4-Chlorophenol Treated in Fe2O3 Supported γ-Alumina Catalyst and O3 (Fe2O3/γ-Al2O3 세라믹촉매와 오존을 이용한 4-클로로페놀의 분해특성)

  • 박병기;이정민;서동수
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.485-492
    • /
    • 2004
  • We prepared cylindrical y-alumina pellets using amorphous alumina and pore generating agent. The pellets were immersed in an aqueous solution of the mixture of Fe(NO$_3$)$_3$ㆍ9$H_{2}O$ and $CH_3$COOH. They were then hydrothermally treated at 20$0^{\circ}C$ for 3 h in autoclave, dried and calcined. For the application of environmental catalyst for its, we investigated the decomposition characteristics of 4-chlorophenol and the initiation characteristics of OH' conversion action in $O_3$ environment with or without the Fe$_2$O$_3$ supported ${\gamma}$-alumina catalyst and $O_3$ molecule.

The Synthesis of Kaolinitic Clay Minerals from Domestic Diatomite by Hydrothermal Process (국내산 규조토의 수열반응에 의한 Kaolinite질 인공점토의 합성에 관한 연구)

  • 김남일;박계혁;정창주
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.11
    • /
    • pp.1401-1413
    • /
    • 1994
  • The synthesis of kaolinite mineral from domestic diatomite for silica resource, commercial vailable gibbsite or alumina for alumina resource were made under various hydrothermal treatment, and the sythetic effect of acidic mineralizers, temperature treatment with time duration, particle size of alumina on formation of kaolinite mineral and the plastic properties of synthesized kaolinite were investigated. The various acidic mineralizers which are HCl, HNO3, H2SO4 and Oxalic acid were employed for hydrothermal reaction in the range of 0.01 mol/ι to 2 mol/ι concentration of each mineralizers. It was found that HCl in the level of 1 mol/ι solution produced highly yields of well-crystallized and platy form kaolinite mineral and gave the most effective extraction of iron oxide, compared to that of others, that HNO3 produced highly yield of kaolinite but lower extraction of iron oxide, that H2SO4 produced low yield of kaolinite and formed alunite mineral, and that oxialic acid formed spherical crystalline kaolinite and gave low extraction of iron oxide. Moreover, it showed that kaolinite minerals were well synthesized in a wide range of less than 2 mol/ι acids, but were poorly synthesized at more than 2 mol/ι acids. However, boehmite and kaolinite were coexistently formed in the temperature range of 18$0^{\circ}C$ and 20$0^{\circ}C$ when the calcined diatomite and gibbsite were involved. The well-ordered kaolinite mineral as a platy form was highly synthesized in the temperature range of 220 and 24$0^{\circ}C$, when the same marterials as above were used with treatment of 1 mol/ι HCl solution. The results also revealed that the size of crystalline platy form kaolinite, synthesized from alumina and calcined diatomite with treatment in 1 mol/ιHCl solution at 24$0^{\circ}C$, was much larger than that of gibbsite and calcined diatomite shown previously, and that kaolinite and corundum minerals were coexistently formed under any hydrothermal treatment conditions. The plasticity of synthesized kaolinite from under 2 ${\mu}{\textrm}{m}$ alumina and calcined diatomite was very poor, and that of the synthesized kaolinite from raw diatomite and gibbsite gave higher than that of calcined diatomite and gibbsite.

  • PDF

Fabrication and Characterization of Alumina/Silver Nanocomposites

  • Cheon, Seung-Ho;Han, In-Sub;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.343-348
    • /
    • 2007
  • Alumina/silver nanocomposites were fabricated using a soaking method through a sol-gel route to construct an intra-type nanostructure. The pulse electric-current sintering (PECS) technique was used to sinter the nanocomposites. Several specimens were annealed after sintering. The microstructure, mechanical properties, critical frontal process zone (FPZ) size, and thermo-mechanical properties of the nanocomposites were estimated. The relative densities of the specimens sintered at 1350 and $1450^{\circ}C$ were 95% and 99%, respectively. The maximum value of the three-point bending strength was found to be 780 MPa for the $2{\times}2{\times}10 mm$ specimen sintered at $1350^{\circ}C$. The fracture toughness of the specimen sintered at $1350^{\circ}C$ was measured to be $3.60 MPa{\cdot}m^{1/2}$ using the single-edge V-notched beam (SEVNB) technique. The fracture mode of the nanocomposites was transgranular, in contrast to the intergranular mode of monolithic alumina. The fracture morphology suggested that dislocations were generated around the silver nanoparticles dispersed within the alumina matrix. The specimens sintered at $1350^{\circ}C$ were annealed at $800^{\circ}C$ for 5 min, following which the maximum fracture strength became 810 MPa and the fracture toughness improved to $4.21 MPam^{1/2}$. The critical FPZ size was the largest for the specimen annealed at $800^{\circ}C$ for 5 min. Thermal conductivity of the alumina/silver nanocomposites sintered at $1350^{\circ}C$ was 38 W/mK at room temperature, which was higher than the value obtained with the law of mixture.