• Title/Summary/Keyword: Altitude Variation

Search Result 182, Processing Time 0.027 seconds

Study on the Synchronization of Time Delay and Integration against Osculating Altitude Variation in Satellite Imager (순간 고도 변화에 대한 위성 영상 기기의 Time Delay and Integration 일치 연구)

  • Cho Young-Min;Kim Hae-Dong
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.227-234
    • /
    • 2004
  • The synchronization of Time Delay and Integration (TDI) against the temporal variation of osculating altitude in the operation of high resolution satellite imager was studied. The characteristics of osculating altitude variation was analyzed and its impact on the performance of TDI imger was also investigated. A practical ]me rate control method was proposed to compensate instantaneous TDI mismatch due to the osculating altitude variation, so that geometrical performance enhancement was achieved by the proposed method. This study is applicable to real satellite operation and can be useful for satellite image quality enhancement.

Defect Diagnostics of Gas Turbine with Altitude Variation Using Hybrid SVM-Artificial Neural Network (SVM-인공신경망 알고리즘을 이용한 고도 변화에 따른 가스터빈 엔진의 결함 진단 연구)

  • Lee, Sang-Myeong;Choi, Won-Jun;Roh, Tae-Seong;Choi, Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.1
    • /
    • pp.43-50
    • /
    • 2007
  • In this study, Hybrid Separate Learning Algorithm(SLA) consisting of Support Vector Machine(SVM) and Artificial Neural Network(ANN) has been used for developing the defect diagnostic algorithm of the aircraft turbo-shaft engine in the off-design range considering altitude variation. Although the number of teaming data and test data highly increases more than 6 times compared with those required for the design condition, the proposed defect diagnostics of gas turbine engine using SLA was verified to give the high defect classification accuracy in the off-design range considering altitude variation.

Performance Characteristics for the Variation of Altitude and Tilt Angle in the Satellite Imager Using Time Delay and Integration(TDI) (Time Delay and Integration(TDI)을 사용하는 위성 영상 기기의 고도 및 촬영각 변화에 대한 성능 특성)

  • 조영민
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.2
    • /
    • pp.91-96
    • /
    • 2002
  • The performance characteristics of a satellite imager using a Time Delay and Integration(TDI) Charge Coupled Device (CCD) with fixed integration time is investigated for the variation of satellite altitude and tilt angle. In consequence of the investigation TDI synchronization using tilt imaging is proposed as a solution to compensate geometric performance degradation due to altitude decrease. The tilt angle optimized for the TDI synchronization at decreased altitude is presented. This result can be used for a TDI CCD imager with variable integration time in a certain range as well.

제주도 한라산 남북측 사면 용천수의 수리지구화학

  • 이광식;박원배;현승규;김용제;문덕철;김구영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.408-412
    • /
    • 2004
  • A total of 23 springs distributed in the southern and northern sides of Mt. Hala in Jeju Island were seasonally sampled and analyzed for their major ion chemistry and oxygen and hydrogen isotope compositions to investigate their hydrogeochemical and isotopic characteristics. Dissolved ion concentrations of the south-side springs slightly increase with decreasing altitude. This indicates that dissolved ion concentrations of groundwater recharged at higher altitudes increase by water-rock interaction during the downgradient migration of groundwater through highly permeable volcanic aquifer. Dissolved ion concentrations of the north-side springs also slightly increase with decreasing altitude, but dramatically increase at ~300 m.a.s.l. This may indicate a sudden input of contaminants to the north-side groundwater system around ~300 m.a.s.l. Springs located in areas above ~300 m.a.s.l. have very low concentrations of dissolved ions, showing little seasonal variations. Whereas springs located in areas below ~300 m.a.s.l. show a big seasonal variation in the concentration of dissolved ions. Seasonal variation of oxygen isotope compositions of springs is ~3$\textperthousand$ for high-altitude springs (~1700 m.a.s.l.) and is ~2$\textperthousand$ near shore, indicating an attenuation of the variation through mixing with other groundwater bodies during migration.

  • PDF

The Variation of Culm Characteristics of Phyllostachys bambusoides Associated with Altitudinal Gradient in Mt. Jiri (지리산(智異山) 지역(地域)의 해발고(海拔高)에 따른 왕대의 간형질(稈形質) 변이(變異))

  • Jeong, Jong Sung;Lee, Kang Young
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.2
    • /
    • pp.235-241
    • /
    • 1988
  • This study was carried out to identify the variation of culm characteristics of Phyllostachys bambusoides associated with attitudinal gradient in Mt. Jiri. The results obtained were summarized as follows : It was estimated that the average temperature at the altitude of 400 meters of Mt. Jiri was $12^{\circ}C$ which was closely associated with the horizontal distributions. It was observed that frequency distribution of the culm height, D.E.H. and clear length from the altitude of 200 meters to 400 meters shown at higher than that from 500 meters to 600 meters, and that frequency of clear length/culm height showed about equal for both altitude ranges. In the case of culm height, D.E.H. and clear length/culm height, coefficients of variation ranged from 15 percent to 25 percent, and those of clear length were over 25 percent for both altitude ranges. It was observed that culm height, D.E.H., clear length and clear length/culm height among each altitude ranges were significant at the 1 percent level. The Duncan's Test of culm characteristics among altitude ranges distinguished bamboos of below 400 meters from bamboos of over 500 meters. The correlation coefficients among culm characteristics of Phyllostachys bambusoides associated with attitudinal gradient were shown to be highly significant. In conclusion, the variation of calm characteristics of Phyllostachys bambusoides was large for below 400 meters and these results suggest that planting of the species should be done below 400 meters.

  • PDF

Defect Diagnostics of Gas Turbine Engine with Altitude Variation Using SVM and Artificial Neural Network (SVM과 인공신경망을 이용한 고도 변화에 따른 가스터빈 엔진의 결함 진단 연구)

  • Lee Sang-Myeong;Choi Won-Jun;Roh Tae-Seong;Choi Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.209-212
    • /
    • 2006
  • In this study, Support Vector Machine(SVM) and Artificial Neural Network(ANN) are used for developing the defect diagnostic algorithm of the aircraft turbo-shaft engine. Effect of altitude variation on the Defect Diagnostics algorithm has been included and evaluated. Separate learning Algorithm(SLA) suggested with ANN to loam the performance data selectively after classifying the position of defects by SVM improves the classification speed and accuracy.

  • PDF

Performance Characteristics of Time Delay and Integration(TDI) Satellite Imager for Altitude Change and Line-Of-Sight Tilt over Spherical Earth Surface

  • Cho, Young-Min
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.216-221
    • /
    • 2002
  • A spherical Earth surface is used fur realistic analysis of the geometrical performance characteristics about the variation of satellite altitude and 2-dimensional line-of-sight(LOS) tilt angle in a satellite imager using Time Delay and Integration(TDI) technique with fixed integration time. In the spherical Earth surface model TDI synchronization using LOS tilt is investigated as a solution to compensate geometric performance degradation due to altitude decrease. This result can be used fur a TDI CCD imager with variable integration time in a certain as well.

  • PDF

A Methodology for Rain Gauge Network Evaluation Considering the Altitude of Rain Gauge (강우관측소의 설치고도를 고려한 강우관측망 평가방안)

  • Lee, Ji Ho;Jun, Hwan Don
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.113-124
    • /
    • 2014
  • The observed rainfall may be different along with the altitude of rain gauge, resulting in the fact that the characteristics of rainfall events occurred in urban or mountainous areas are different. Due to the mountainous effects, in higher altitude, the uncertainty involved in the rainfall observation gets higher so that the density of rain gauges should be more dense. Basically, a methodology for the rain gauge network evaluation, considering this altitude effect of rain gauges can account for the mountainous effects and becomes an important step for forecasting flash flood and calibrating of the radar rainfall. For this reason, in this study, we suggest a methodology for rain gauge network evaluation with consideration of the rain gauge's altitude. To explore the density of rain gauges at each level of altitude, the Equal-Altitude-Ratio of the density of rain gauges, which is based on the fixed amount of elevation and the Equal-Area-Ratio of the density of rain gauges, which is based on the fixed amount of basin area are designed. After these two methods are applied to a real watershed, it is found that the Equal-Area-Ratio generates better results for evaluation of a rain gauge network with consideration of rain gauge's altitude than the Equal-Altitude-Ratio does. In addition, for comparison between the soundness of rain gauge networks in other watersheds, the Coefficient of Variation (CV) of the rain gauge density by the Equal-Area-Ratio is served as the index for the evenness of the distribution of the rain gauge's altitude. The suggested method is applied to the five large watersheds in Korea and it is found that rain gauges installed in a watershed having less value of the CV shows more evenly distributed than the ones in a watershed having higher value of the CV.

Reliability of Measurement Estimation in Altitude Engine Test (엔진 고도 시험의 측정 신뢰성 평가)

  • Lee, Jin-Kun;Yang, In-Young;Yang, Soo-Seok;Kwak, Jae-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.3
    • /
    • pp.1-6
    • /
    • 2006
  • The altitude engine test is a sort of engine performance tests carried out to measure the performance of a engine at the simulated altitude and flight speed environments prior to that at the flight test. During the performance test of a engine, various values such as pressures and temperatures at different positions, air flow rate, fuel flow rate, and the load by thrust are measured. These measured values are used to derive the representative performance values such as the net thrust and the specific fuel consumption through a momentum equation. Hence each of the measured values has certain effects on the total uncertainty of the performance values. In this paper, the combined standard uncertainties of the performance variables at the engine test were estimated by the uncertainty analysis of the measurement values and the repeatability and reproducibility of the altitude test measurement were assessed by the analysis of variation on the repeated test data with different operator groups.

  • PDF

An Ignition Characteristics of Slinger Combustor at High Altitude Condition (고고도 조건에서 슬링거 연소기의 점화특성 연구)

  • Lee Kang-Yeop;Lee Dong-Hun;Park Young-Il;Kim Hyung-Mo;Park Poo-Min;Lee Kyung-Jae;Choi Ho-Jin;Chang Hyun-Soo;Choi Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.309-312
    • /
    • 2005
  • High altitude ignition test was performed to understand high altitude ignition characteristics of slinger combustor. To verify ignition limits, test was carried out with variation of altitude and fuel nozzle rotational speed using AETF(Altitude Engine Test Facility) in KARI(Korea Aerospace Research Institute). From the result, the effect of major factors which affect on ignition characteristics was observed. The reduction of ignition limit with increasing altitude and expansion of ignition limit with increasing rotational speed of fuel nozzle was verified. Also minimum rotational speed of fuel nozzle at high altitude must be greater than that of seal level condition.

  • PDF