• Title/Summary/Keyword: Alternative protein

Search Result 612, Processing Time 0.029 seconds

Tat-indoleamine 2,3-dioxygenase 1 elicits neuroprotective effects on ischemic injury

  • Park, Jung Hwan;Kim, Dae Won;Shin, Min Jea;Park, Jinseu;Han, Kyu Hyung;Lee, Keun Wook;Park, Jong Kook;Choi, Yeon Joo;Yeo, Hyeon Ji;Yeo, Eun Ji;Sohn, Eun Jeong;Kim, Hyoung-Chun;Shin, Eun-Joo;Cho, Sung-Woo;Kim, Duk-Soo;Cho, Yong-Jun;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • v.53 no.11
    • /
    • pp.582-587
    • /
    • 2020
  • It is well known that oxidative stress participates in neuronal cell death caused production of reactive oxygen species (ROS). The increased ROS is a major contributor to the development of ischemic injury. Indoleamine 2,3-dioxygenase 1 (IDO-1) is involved in the kynurenine pathway in tryptophan metabolism and plays a role as an anti-oxidant. However, whether IDO-1 would inhibit hippocampal cell death is poorly known. Therefore, we explored the effects of cell permeable Tat-IDO-1 protein against oxidative stress-induced HT-22 cells and in a cerebral ischemia/reperfusion injury model. Transduced Tat-IDO-1 reduced cell death, ROS production, and DNA fragmentation and inhibited mitogen-activated protein kinases (MAPKs) activation in H2O2 exposed HT-22 cells. In the cerebral ischemia/reperfusion injury model, Tat-IDO-1 transduced into the brain and passing by means of the blood-brain barrier (BBB) significantly prevented hippocampal neuronal cell death. These results suggest that Tat-IDO-1 may present an alternative strategy to improve from the ischemic injury.

Butyrate and taurine exert a mitigating effect on the inflamed distal intestine of European sea bass fed with a high percentage of soybean meal

  • Rimoldi, Simona;Finzi, Giovanna;Ceccotti, Chiara;Girardello, Rossana;Grimaldi, Annalisa;Ascione, Chiara;Terova, Genciana
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.10
    • /
    • pp.40.1-40.14
    • /
    • 2016
  • Background: Due to the paucity of oceanic resources utilized in the preparation of diets for cultured fish, commercial feed producers have been trying to replace fishmeal (FM) using alternative protein sources such as vegetable protein meals (VMs). One of the main drawbacks of using VMs in fish feed is related to the presence of a variety of anti-nutritional factors, which could trigger an inflammation process in the distal intestine. This reduces the capacity of the enterocytes to absorb nutrients leading to reduced fish growth performances. Methods: We evaluated the mitigating effects of butyrate and taurine used as feed additives on the morphological abnormalities caused by a soybean meal (SBM)-based diet in the distal intestine of sea bass (Dicentrarchus labrax). We used three experimental diets, containing the same low percentage of FM and high percentage of SBM; two diets were supplemented with either 0.2% sodium butyrate or taurine. Histological changes in the intestine of fish were determined by light and transmission electron microscopy. Infiltration of $CD45^+$ leucocytes in the lamina propria and in the submucosa was assessed by immunohistochemistry. We also quantified by One-Step Taqman$^{(R)}$ real-time RT-PCR the messenger RNA (mRNA) abundance of a panel of genes involved in the intestinal mucosa inflammatory response such as $TNF{\alpha}$ (tumor necrosis factor alpha) and interleukins: IL-8, IL-$1{\beta}$, IL-10, and IL-6. Results: Fish that received for 2 months the diet with 30% soy protein (16.7% SBM and 12.8% full-fat soy) developed an inflammation in the distal intestine, as confirmed by histological and immunohistochemistry data. The expression of target genes in the intestine was deeply influenced by the type of fish diet. Fish fed with taurine-supplemented diet displayed the lowest number of mRNA copies of IL-$1{\beta}$, IL-8, and IL-10 genes in comparison to fish fed with control or butyrate-supplemented diets. Dietary butyrate caused an upregulation of the $TNF{\alpha}$ gene transcription. Among the quantified interleukins, IL-6 was the only one to be not influenced by the diet. Conclusions: Histological and gene expression data suggest that butyrate and taurine could have a role in normalizing the intestinal abnormalities caused by the SBM, but the underling mechanisms of action seem different.

Antifungal Activity and Plant Growth Promotion by Rhizobacteria Inhibiting Growth of Plant Pathogenic Fungi (식물병원성 진균을 억제하는 근권세균의 항진균능과 식물생장촉진능)

  • Jung, Taeck-Kyung;Kim, Ji-Hyun;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.48 no.1
    • /
    • pp.16-21
    • /
    • 2012
  • Since many pesticides cause various health and environmental problems, alternative measures to replace them are needed, and the bacteria producing the antifungal substances can be one of them. In this study, several rhizobacteria were isolated and their antifungal activities against some important plant pathogenic fungi were examined. Pseudomonas otitidis TK1 and Paenibacillus peoriae RhAn32 inhibited the growth of Fusarium oxysporum f. sp. niveum and F. oxysporum f. sp. lycopersici by 49.8% and 45.6%, and 45.1% and 48.3%, respectively compared to those of the control. P. peoriae RhAn32 also decreased the growth of F. oxysporum f. sp. raphani by 37.5%. This growth inhibition might be due to the production of antifungal substances, such as siderophore, hydrogen cyanide and chitinase, which were produced by these rhizobacteria. P. otitidis TK1 also produced plant growth hormones indole acetic acid and indole butyric acid at $293.41{\mu}g/mg$ protein and $418.53{\mu}g/mg$ protein, respectively. When P. otitidis TK1 and B. cereus TK2 were inoculated together with F. oxysporum f. sp. lycopersici to the 4 weeks grown tomato seedlings and incubated additional 8 weeks, the stem lengths of tomato increased up to 45.7% and 55.3% and root lengths were raised to 64.9% and 60.8%, respectively than those of the control group. The wet weights increased by 118% and 182%, respectively compared to the control group.

Expression of Recombinant Human Epidermal Growth Factor as a Active Form through Codon Optimization with E. coli and Co-expression of Chaperone (코돈 최적화 및 샤페론 공발현을 통한 활성 형태의 재조합 인간 상피세포성장인자의 발현)

  • Jang, Eun-Bin;Kim, Jun Su;Lee, Woo-Yiel
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.559-568
    • /
    • 2020
  • Epidermal growth factor (EGF) is a hormone protein that affects cell growth and proliferation, and has various medical applications. In the present study, the gene of human EGF was codon-optimized with E. coli and the expression vector was constructed by cloning into pRSET. In order to obtain the recombinant human EGF in an active form rather than an inclusion body, chaperone co-expression was attempted along with codon optimization, for the first time. The expressed human EGF was isolated in the pure form by performing Ion Exchange Chromatography in two consecutive runs. ELISA analysis showed that the activity of purified EGF was greater than 99%, which is similar to commercially available EGF. Cell proliferation test confirmed that the recombinant human EGF has the ability to promote cell proliferation of human skin fibroblasts. The human EGF expression system of this study gives a significant amount of protein, and does not require the renaturation step and the additional chromatographic system to remove a fusion contaminant, thereby providing a very useful alternative to conventional expression systems for the preparation of recombinant human EGF.

Yield and Chemical Composition of Cassava Foliage and Tuber Yield as Influenced by Harvesting Height and Cutting Interval

  • Khang, Duong Nguyen;Wiktorsson, Hans;Preston, Thomas R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.1029-1035
    • /
    • 2005
  • A 3${\times}$4 factorial field experiment with a complete randomised split-plot design with four replicates was conducted from June 2002 to March 2003 at the experimental farm of the Nong Lam University, Ho Chi Minh City, Vietnam, to determine effects of different harvesting heights (10, 30 and 50 cm above the ground) and cutting intervals (45, 60, 90 and 285 days) on yield of foliage and tubers, and chemical composition of the foliage. Cassava of the variety KM 94 grown in plots of 5 m${\times}$10 m at a planting distance of 30 cm${\times}$50 cm was hand-harvested according to respective treatments, starting 105 days after planting. Foliage from the control treatment (285 days) and all tubers were only harvested at the final harvest 285 days after planting. Dry matter and crude protein foliage yields increased in all treatments compared to the control. Mean foliage dry matter (DM) and crude protein (CP) yields were 4.57, 3.53, 2.49, and 0.64 tonnes DM $ha^{-1}$ and 939, 684, 495 and 123 kg CP $ha^{-1}$ with 45, 60, 90 and 285 day cutting intervals, respectively. At harvesting heights of 10, 30 and 50 cm the DM yields were 4.27, 3.67 and 2.65 tonnes $ha^{-1}$ and the CP yields were 810, 745 and 564 kg $ha^{-1}$, respectively. The leaf DM proportion was high, ranging from 47 to 65%. The proportion of leaf and petiole increased and the stem decreased with increasing harvesting heights and decreasing cutting intervals. Crude protein content in cassava foliage ranged from 17.7 to 22.6% and was affected by harvesting height and cutting interval. The ADF and NDF contents of foliage varied between 22.6 and 30.2%, and 34.2 and 41.2% of DM, respectively. The fresh tuber yield in the control treatment was 34.5 tonnes $ha^{-1}$. Cutting interval and harvesting height had significant negative effects on tuber yield. The most extreme effect was for the frequent foliage harvesting at 10 cm harvesting height, which reduced the tuber yield by 72%, while the 90 day cutting intervals and 50 cm harvesting height only reduced the yield by 7%. The mean fresh tuber yield decreased by 56, 45 and 27% in total when the foliage was harvested at 45, 60 and 90 day cutting intervals, respectively. It is concluded that the clear effects on quantity and quality of foliage and the effect on tuber yield allow alternative foliage harvesting principles depending on the need of fodder for animals, value of tubers and harvesting cost. An initial foliage harvest 105 days after planting and later harvests with 90 days intervals at 50 cm harvesting height increased the foliage DM and CP yield threefold, but showed only marginal negative effect on tuber yield.

Effect of Chungsangboha-tang on LPS induced Anti-inflammatory in THP-1 cells (LPS로 유발된 대식세포의 염증반응에 대한 청상보하탕(淸上補下湯)의 효과)

  • Lee, Kyung-Hee;Kim, Hong-yeoul;Jung, Hee-Jae;Lee, Hyung-Koo
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.12-24
    • /
    • 2008
  • Background and Objective : Chungsangboha-tang (CSBHT) has analgesic, sedative, anti-convulsive and anti-histamine effects, so it alleviates the symptoms of asthma. For the comparison of anti-inflammatory effect(s) on CSBHT, PD098059 was used as a negative control. Materials and Methods : This study emphasized THP-1 cells, which had been well characterized as a human monocytic leukemic cell line. The cells resemble monocytes with respect to several criteria and can be differentiated into macrophage-like cells by treatment with PMA. By using the MTS assay, it was possible to prove the safety of CSBHT. Results : Results shows that the CSBHT did not affected cell survival within $10^{1}$ ng/ml to $10^{5}$ ng/ml. Especially, $10^{5}$ ng/ml CSBHT treated cells show 70% deduction of $TNF-{\alpha}$ gene expression against that of LPS treated group. Furthermore, $IL-1{\beta}$, IL-6, IL-8, IL-10 and $TNF-{\alpha}$ levels are down-regulated when treated with CSBHT with concentrations up to 100 ug/ml on monocyte-derived macrophages. Interestingly, CSBHT-treated samples showed that overall transcriptional activities were down-regulated to 20% of that of PD098059 ($TNF-{\alpha}$ inhibitor). At protein level, the expression of $TNF-{\alpha}$ showed similar results as that of transcriptional activity. Results show that the protein level decreased more in the CSBHT-treated group (487 ${\pm}$ 87 pg/ml) than in the LPS-treated group (703 ${\pm}$ 103 pg/ml). In addition, the protein level of IL-8 in the CSBHT treated-group (9.84 ${\pm}$ 3.28 ng/ml) decreased similar as the expression of the control and PD098059-treated groups. Conclusion : CSBHT affects immune response, especially allergic responses and suppression of inflammatory reaction. The results provide us an alternative way to care for clinical inflammatory diseases, not only asthma but also the other possible general inflammatory and allergic diseases.

  • PDF

Dietary inclusion effect of yacon, ginger, and blueberry on growth, body composition, and disease resistance of juvenile black rockfish (Sebastes schlegeli) against Vibrio anguillarum

  • Lee, Ki Wook;Jeong, Hae Seung;Cho, Sung Hwoan
    • Fisheries and Aquatic Sciences
    • /
    • v.23 no.4
    • /
    • pp.7.1-7.8
    • /
    • 2020
  • Background: To minimize the use of antibiotics and to obtain a more sustainable fish culture and aquaculture industry, development of alternative natural source of immunostimulant to replace antibiotic in aquafeed is highly needed. Objective: Dietary inclusion effect of yacon (YC), ginger (GG), and blueberry (BB) on growth, body composition, and disease resistance of black rockfish against Vibrio anguillarum was compared to ethoxyquin (EQ). Methods: Four hundred eighty juvenile (an initial weight of 4.2 g) fish were randomly distributed into 12 of 50 L flowthrough tanks (forty fish per tank). Four experimental diets were prepared; the control (Con) diet with 0.01% EQ inclusion, and YC, GG, and BB diets at 1% each additive inclusion. Each additive was included into the experimental diets at the expense of wheat flour. Each diet was assigned to triplicate tanks of fish and hand-fed to satiation twice daily for 8 weeks. At the end of 8-week feeding trial, 20 fish from each tank fish were artificially infected by intraperitoneal injection with 0.1 mL of culture suspension of pathogenic V. anguillarum containing 3.3 × 106 cfu/mL respectively. Fish were monitored for the following 8 days after V. anguillarum infection and dead fish were removed every 6 h for the first 4 days and 12 h for the rest of the study. Results: Weight gain, specific growth rate (SGR), and feed efficiency ratio (FER) of fish fed the YC diet was higher than those of fish fed all other diets. However, feed consumption, protein efficiency ratio, and protein retention was not affected by dietary additive. Moisture, crude protein, and crude lipid content of the whole body of fish were affected by dietary additive. Analysis of the Kaplan-Meier survival curves showed that survival of fish fed the YC, BB, and GG diets was higher than the Con diet. Conclusion: Oral administration of YC can improve not only weight gain, SGR, and FER of black rockfish, but lower mortality of rockfish at occurrence of V. anguillarum.

Inhibitory Effects of Ethanol Extract of Rhodiola Sacra on Endoplasmic Reticulum Stress in Neuro-2A Cells (설치류 Neuro-2A 신경세포에서 홍경천 에탄올 추출물의 소포체 스트레스 억제효과)

  • Jo, Nam-Eun;Song, Young-soon
    • Journal of Digital Convergence
    • /
    • v.17 no.8
    • /
    • pp.265-270
    • /
    • 2019
  • Growing evidence suggests that mediating apoptotic cell death of ER stress plays an important role in pathological development of neurodegenerative diseases including Alzheimer's disease. The ethanol extract of Rodiola sacra (ERS) investigates whether ER stress protects neuroinvasive neuro-2A cells from homocysteine (Hcy) cell death and ER stress. In neuronal cells, Hcy markedly decreased the viability of the cells and induced the death of Annexin V-positive cells as confirmed by MTT assay. The Hcy cell viability and apoptotic loss pretreated with ERS were attenuated, and Hcy showed stress in the expression of C / EBP homologous protein, 78-kDa glucose regulatory protein and the junction of X-box binding protein-1 (xbp1) mRNA. ESR decreased Hcy-induced mRNA binding, GRP78 and CHOP cells induced Hcy-induced ER stress and apoptosis, and Western blotting revealed expression of heme oxygenase-1 and HO-1 enzyme activity Inhibition is indicative of therapeutic value for neurodegenerative diseases such as decreased cell death by hemin.

Effects of Ketone Body Supplementation on Exercise Performance, Post-exercise Recovery, and Muscle Protein Metabolism (케톤 보충제가 운동수행능력, 운동 후 회복, 및 근육 단백질 대사에 미치는 영향)

  • Jeong-sun Ju;Yi Sub Kwak
    • Journal of Life Science
    • /
    • v.33 no.5
    • /
    • pp.436-444
    • /
    • 2023
  • Scientific training, diet, and ergogenic aids are widely used to overcome the limits of humans' physical abilities and to achieve excellent sports records. The adoption of nutritional strategies is important for athletes to perform at their highest level, and one of the main factors determining endurance ability is increased fat metabolism. A ketogenic diet (high fat, low carbohydrates) has thus been proposed as an alternative strategy to maximize fatty acid oxidation during prolonged periods of exercise. However, studies have shown mixed results regarding the ergogenic value of a ketogenic diet. For this reason, exogenous ketone supplements (EKS, ingestible forms of ketone bodies, ketone esters, and/or salts) have been suggested to obtain nutritional ketosis, an acute transient increase in circulating acetoacetate (AcAc) and b-hydroxybutyrate (bHB) concentrations, without limiting carbohydrate intake. Some studies have suggested the beneficial effects of EKS on the performance of endurance exercises by providing an additional fuel substrate for peripheral tissues, such as cardiac and skeletal muscles, sparing carbohydrates/increasing fat oxidation and post-exercise recovery by increasing glycogen resynthesis in the liver/muscle, attenuating protein degradation, stimulating protein synthesis in the skeletal muscle, etc. However, many studies have failed to observe the beneficial effects of EKS as an ergogenic aid. As such, this review summarizes the theoretical basis of, as well as the proposed and proven effects of EKS on exercise performance and recovery to date.

Synergistic Effect of Hydrogen and 5-Aza on Myogenic Differentiation through the p38 MAPK Signaling Pathway in Adipose-Derived Mesenchymal Stem Cells

  • Wenyong Fei;Erkai Pang;Lei Hou;Jihang Dai;Mingsheng Liu;Xuanqi Wang;Bin Xie;Jingcheng Wang
    • International Journal of Stem Cells
    • /
    • v.16 no.1
    • /
    • pp.78-92
    • /
    • 2023
  • Background and Objectives: This study aims to clarify the systems underlying regulation and regulatory roles of hydrogen combined with 5-Aza in the myogenic differentiation of adipose mesenchymal stem cells (ADSCs). Methods and Results: In this study, ADSCs acted as an in vitro myogenic differentiating mode. First, the Alamar blue Staining and mitochondrial tracer technique were used to verify whether hydrogen combined with 5-Aza could promote cell proliferation. In addition, this study assessed myogenic differentiating markers (e.g., Myogenin, Mhc and Myod protein expressions) based on the Western blotting assay, analysis on cellular morphological characteristics (e.g., Myotube number, length, diameter and maturation index), RT-PCR (Myod, Myogenin and Mhc mRNA expression) and Immunofluorescence analysis (Desmin, Myosin and 𝛽-actin protein expression). Finally, to verify the mechanism of myogenic differentiation of hydrogen-bound 5-Aza, we performed bioinformatics analysis and Western blot to detect the expression of p-P38 protein. Hydrogen combined with 5-Aza significantly enhanced the proliferation and myogenic differentiation of ADSCs in vitro by increasing the number of single-cell mitochondria and upregulating the expression of myogenic biomarkers such as Myod, Mhc and myotube formation. The expressions of p-P38 was up-regulated by hydrogen combined with 5-Aza. The differentiating ability was suppressed when the cells were cultivated in combination with SB203580 (p38 MAPK signal pathway inhibitor). Conclusions: Hydrogen alleviates the cytotoxicity of 5-Aza and synergistically promotes the myogenic differentiation capacity of adipose stem cells via the p38 MAPK pathway. Thus, the mentioned results present insights into myogenic differentiation and are likely to generate one potential alternative strategy for skeletal muscle related diseases.