• Title/Summary/Keyword: Alternative material

Search Result 1,453, Processing Time 0.025 seconds

A Study on Catalytic Pyrolysis of Polypropylene with Mn/sand (Mn/sand 촉매를 활용한 폴리프로필렌 촉매 열분해 연구)

  • Soo Hyun Kim;Seung Hun Baek;Roosse Lee;Sang Jun Park;Jung Min Sohn
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.185-192
    • /
    • 2023
  • This study was conducted to obtain basic process simulation data before conducting pyrolysis experiments for the development of a thermochemical conversion system by recirculation of heat carrier and gases thereby. In this study, polypropylene (PP) was used as a pyrolysis sample material as an alternative to waste plastics, and fluid sand was used as a heat transfer medium in the system. Manganese (Mn) was chosen as the catalyst for the pyrolysis experiment, and the catalyst pyrolysis was performed by impregnating it in the sand. The basic properties of PP were analyzed using a thermogravimetric analyzer (TGA), and liquid oil was generated through catalytic pyrolysis under a nitrogen atmosphere at 600℃. The carbon number distribution of the generated liquid oil was confirmed by GC/MS analysis. In this study, the effects of the presence and the amount of Mn loading on the yield of liquid oil and the distribution of hydrocarbons in the oil were investigated. When Mn/sand was used, the residue decreased and the oil yield increased compared to pyrolysis using sand alone. In addition, as the Mn loading increased, the ratio of C6~C9 range gasoline in the liquid oil gradually increased, and the distribution of diesel and heavy oil with more carbon atoms than C10 in the oil decreased. In conclusion, it was found that using Mn as a catalyst and changing the amount of Mn could increase the yield of liquid oil and increase the gasoline ratio in the product.

Growth characteristics of Lentinula edodes treated with bean sprout waste (콩나물 부산물 첨가량에 따른 표고의 생장특성)

  • Youn-Jin Park;Jin-Woo Lee;Myoung-Jun Jang
    • Journal of Mushroom
    • /
    • v.21 no.3
    • /
    • pp.150-153
    • /
    • 2023
  • In this study, the growth characteristics of Lentinula edodes were confirmed by bean sprout waste(BW) as an alternative raw material for rice bran. The mycelium growth of Sanjo701, a major cultivation variety of L. edodes, was compared between a medium mixed with 8:2(v/v) of oak sawdust and a medium mixed with BW 50% and BW 100%. The mycelium growth in BW 50% was 13.5 cm. Compared to the control, BW 50% increased the diameter of the pileus by 1.6 cm. Additionally, the length of the pileus decreased by 0.4 cm when comparing the growth of the fruit body. In contrast, at BW 50%, the diameter of the pileus decreased by 9.6 cm and the length of the stipe decreased by 1.4 cm. According to analysis of the constituent amino acids, BW 50% showed a lower overall nutritional content than the control, whereas BW 100% had a lower amino acid content than the control. However, glutamic acid and aspartic acid, which are flavor-enhancing ingredients, were observed at levels of 3.954 mg/g and 1.436 mg/g, respectively, in BW 100%. Therefore, if bean sprout by-products are efficiently processed and utilized, it is believed that they will be beneficial to farmers as a substitute for rice bran and reduce the cost of manufacturing substrate

Heating Characteristics of Carbon Fiber Polyimide-Coated by Electrophoretic Deposition (전기영동증착법으로 폴리이미드를 코팅한 탄소섬유의 발열 특성 연구)

  • Geon-Joo Jeong;Tae-Yoo Kim;Seung-Boo Jung;Kwang-Seok Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.1
    • /
    • pp.90-94
    • /
    • 2023
  • Carbon fiber(CF) with excellent thermal conductivity and electrical conductivity is attracting attention as an alternative material because metal heating elements have problems such as high heat loss and fire risk. However, since CF is oxidized and disconnected at about 200℃ or higher, the application of heating elements is limited, and CF heating elements in the form of vacuum tubes are currently used in some commercial heaters. In this work, polyimide(PI) with high heat resistance was coated on the surface of carbon fiber by electrophoretic deposition to prevent oxidation of CF in the atmosphere without using a vacuum tube, and the coating thickness and heat resistance were investigated according to the applied voltage. The heater made by connecting the PI-coated CF heating elements in series showed stable heating characteristics up to 292℃, which was similar to the heating temperature result of the heat transfer simulation. The PI layer coated by the electrophoretic deposition method is effective in preventing oxidation of CF at 200℃ or higher and is expected to be applicable to various heating components such as secondary batteries, aerospace, and electric vehicles that require heat stability.

The Possibility of Design Creation by Convergence of Contemporary technology and Traditional Craft (신기술과 공예의 융합을 통한 디자인 창작의 가능성)

  • Ha, Euna
    • Korea Science and Art Forum
    • /
    • v.25
    • /
    • pp.463-475
    • /
    • 2016
  • As the transition to the digital age in the late 20th century, the intrinsic value of the craft, the emotional values of human, has been noticed as an alternative to overcome the adverse effects of the modernism of the industrial age. To introduce experimental tries which convergence of contemporary technologies and elements of traditional craft, and to inspire artists and present the new possibility of creation to them who want to take advantage of craft emotion as the elements of creation is the purpose of this study in the current digital technology age. First, the meaning and value of craft in modern times and digital media and hybrid creation environments are theoretically investigated based on previous studies and literature. Second, design cases produced by combining digital technology as a tool and craft elements are classified for substantial understanding of the design. Thirdly, identify the design characteristics presented through case studies and suggest the new possibility of creation. The results of the study are as follows. Reject typical types highlight the functional role and try free express conversion, e.g. form, material, texture, making process etc. Extracts the various elements that can be applied and search combining ways, because the convergence of digital technology and the craft is sufficient to activate the human emotion. Interaction between the craft and the digital medium is made actively. Craft accepts digital form, the craft appeared again as the contents of the digital. the traditional and digital method appropriately fused and utilized depending on the situation in process.

An Investigation of Electrical Properties in Cation-anion Codoped ZnO by Atomic Layer Deposition (원자층 증착법 기반 양이온-음이온 이중 도핑 효과에 따른 ZnO 박막의 전기적 특성 비교 연구)

  • Dong-eun Kim;Geonwoo Kim;Kyung-Mun Kang;Akendra Singh Chabungbam;Hyung-Ho Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.94-101
    • /
    • 2023
  • Zinc oxide(ZnO) is a semiconductor material with a bandgap of 3.37 eV and an exciton binding energy of 60 meV for various applications. Recently ZnO has been proven to enhance its electrical properties for utilization as an alternative for transparent conducting oxide (TCO) materials. In this study, cation(Al, Ga)-anion(F) single and double doped ZnO thin films were grown by atomic layer deposition (ALD) to enhance the electrical properties. The structural and optical properties of doped ZnO thin films were analyzed, and doping effects were confirmed to electrical characteristics. In single doped ZnO, it was observed that the carrier concentration was increased after doping, acting as a donor to ZnO. Among the single doping elements, F doped ZnO(FZO) showed the highest mobility and conductivity due to the passivation effect of oxygen vacancies. In the case of double doping, higher electrical characteristics were observed compared to single doping. Among the samples, Al-F doped ZnO(AFZO) exhibited the lowest resistance value. This results can be attributed to an increase in delocalized electron states and a decrease in lattice distortion resulting from the differences in ionic radius. The partial density of states(PDOS) was also analyzed and observed to be consistent with the experimental results.

Nanoconfinement of Hydrogen and Carbon Dioxide in Palygorskite (팔리고스카이트 내 수소 및 이산화탄소 나노공간한정)

  • Juhyeok Kim;Kideok D. Kwon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.221-232
    • /
    • 2023
  • Carbon neutrality requires carbon dioxide reduction technology and alternative green energy sources. Palygorskite is a clay mineral with a ribbon structure and possess a large surface area due to the nanoscale pore size. The clay mineral has been proposed as a potential material to capture carbon dioxide (CO2) and possibly to store eco-friendly hydrogen gas (H2). We report our preliminary results of grand canonical Monte Carlo (GCMC) simulations that investigated the adsorption isotherms and mechanisms of CO2 and H2 into palygorskite nanopores at room temperature. As the chemical potential of gas increased, the adsorbed amount of CO2 or H2 within the palygorskite nanopores increased. Compared to CO2, injection of H2 into palygorskite required higher energy. The mean squared displacement within palygorskite nanopores was much higher for H2 than for CO2, which is consistent with experiments. Our simulations found that CO2 molecules were arranged in a row in the nanopores, while H2 molecules showed highly disordered arrangement. This simulation method is promising for finding Earth materials suitable for CO2 capture and H2 storage and also expected to contribute to fundamental understanding of fluid-mineral interactions in the geological underground.

Comparison of Combustion, Emissions and Efficiency Characteristics as Varying Spark Timings and Excess air ratios in an Ammonia-fueled Direct Injection Spark Ignition Engine (직접분사식 암모니아 전소 엔진에서 점화 시기와 공기과잉률의 변경에 따른 연소 및 배기, 효율 특성 비교)

  • Yonghun Jang;Cheolwoong Park;Yongrae Kim;Young Choi;Chanki Min;Seungwoo Lee;Hongkil Baek;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • Due to the development of the industrial revolution, regulations on exhaust emissions have been continuously strengthened to reduce the rapidly increasing greenhouse gas emissions. The use of environmentally friendly fuels is essential to meet these regulations. Hydrogen has been attracting attention as a future environmentally friendly fuel, but due to its material properties, it faces significant challenges in handling and storage. As an alternative, ammonia has been proposed. Ammonia can be easily liquefied at room temperature compared to hydrogen and has a high energy density. In order to examine the applicability of ammonia as an engine fuel, experiments were conducted to investigate the effects of changes in combustion control parameters in a direct injection ammonia combustion engine. The experiments were conducted by varying two variables: spark timing and excessive air ratio. Observations were made on combustion stability and the trends of exhaust emissions such as nitrogen oxides and unburned ammonia under the conditions of an engine speed of 1,500 rpm and medium to high loads (brake torque of 200 Nm). By optimizing the combustion control parameters, conditions for stable combustion even when using ammonia as the sole fuel were identified, and plans are underway to apply strategies for future expansion of the operating range.

Evaluation of antioxidant activity, zebrafish embryo toxicity, and regenerative efficacy of Symphoricarpos albus (Symphoricarpos albus의 항산화능과 Zebrafish 배아 독성 및 재생 효능 평가)

  • Chanwoo Lee;HyeYeon Heo;Myunsoo Kim;YoungPyo Jang;Bo Ae Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.292-304
    • /
    • 2024
  • This study compared and evaluated the antioxidant activities of Symphoricarpos albus(S. albus) extract and fermented extract. Antioxidant activity was measured by DPPH radical scavenging, FRAP, and ABTS. Concentrations were measured at 200, 100, 50, and 10 ㎍/mL, and antioxidant activity increased in a concentration-dependent manner. S. albus leaves fermented extracts had the highest antioxidant activity. And this study evaluated the safety and tail regeneration of S. albus extract using zebrafish model embryos. Zebrafish are in the spotlight as an alternative animal and can be used for cosmetic research. Zebrafish embryos were collected and evaluated for coagulation rate, hatching rate, and cardiotoxicity. As a result, it was toxic at concentrations above 100 ㎍/ml. The tail was cut and the regenerative effect was observed for 3 days. As a result, from 72 hours, S. albus 200ug/ml leaf extract showed a 17% regenerative effect compared to the control group. These results suggest that S. albus can be used as a natural material for antioxidant and regeneration for skin improvement.

Effect of Mixture of Recombinant Human Bone Morphogenic Protein-2 and Demineralized Bone Matrix in Lateral Lumbar Interbody Fusion

  • Jun Ik Son;Young-Seok Lee;Myeong Jin Ko;Seong-Hyun Wui;Seung Won Park
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.3
    • /
    • pp.354-363
    • /
    • 2024
  • Objective : This study aims to determine the optimal dose of recombinant-human bone morphogenic protein-2 (rhBMP-2) for successful bone fusion in minimally invasive lateral lumbar interbody fusion (MIS LLIF). Previous studies show that rhBMP is an effective alternative to autologous iliac crest bone graft, but the optimal dose remains uncertain. The study analyzes the fusion rates associated with different rhBMP doses to provide a recommendation for the optimal dose in MIS LLIF. Methods : Ninety-three patients underwent MIS LLIF using demineralized bone matrix (DBM) or a mixture of rhBMP-2 and DBM as fusion material. The group was divided into the following three groups according to the rhBMP-2 usage : group A, only DBM was used (n=27); group B, 1 mg of rhBMP-2 per 5 mL of DBM paste (n=41); and group C, 2 mg of rhBMP-2 per 5 mL of DBM paste (n=25). Demographic data, clinical outcomes, postoperative complication and fusion were assessed. Results : At 12 months post-surgery, the overall fusion rate was 92.3% according to Bridwell fusion grading system. Groups B and C, who received rhBMP-2, had significantly higher fusion rates than group A, who received only DBM. However, there was no significant increase in fusion rate when the rhBMP-2 dosage was increased from group B to group C. The groups B and C showed significant improvement in back pain and Oswestry disability index compared to the group A. The incidence of screw loosening was decreased in groups B and C, but there was no significant difference in the occurrence of other complications. Conclusion : Usage of rhBMP-2 in LLIF surgery leads to early and increased final fusion rates, which can result in faster pain relief and return to daily activities for patients. The benefits of using rhBMP-2 were not significantly different between the groups that received 1 mg/5 mL and 2 mg/5 mL of rhBMP-2. Therefore, it is recommended to use 1 mg of rhBMP-2 with 5 mL of DBM, taking both economic and clinical aspects into consideration.

Evaluation of applicability of xanthan gum as eco-friendly additive for EPB shield TBM soil conditioning (친환경 첨가제로서 잔탄검의 토압식 쉴드 TBM 쏘일 컨디셔닝 적용성 평가)

  • Suhyeong Lee;Hangseok Choi;Kibeom Kwon;Byeonghyun Hwang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.209-222
    • /
    • 2024
  • The Earth Pressure Balance (EPB) shield Tunnel Boring Machine (TBM) is widely used for underground tunnel construction for its advantages, such as eliminating the need for additional facilities compared to the slurry shield TBM, which requires Slurry Treatment Plant (STP). During EPB shield TBM excavation, a soil conditioning technique is employed to enhance the physical properties of the excavated soil by injecting additives, thus broadening the range of applicable ground conditions to EPB shield TBMs. This study explored the use of xanthan gum, a type of biopolymer, as an alternative to the commonly used polymer additive. Biopolymers, derived from biological sources, are fully biodegradable. In contrast to traditional polymers such as polyacrylic acid, which contain environmentally harmful components, xanthan gum is gaining attention as an eco-friendly material due to its minimal toxicity and environmental impact. Test conditions with similar workability were established through slump tests, and the rheological characteristics were assessed using a laboratory pressurized vane shear test apparatus. The experiments demonstrated that, despite exhibiting similar workability, the peak strength in the flow curve decreased with increasing the content of xanthan gum. Consequently, a correlation between the xanthan gum content and peak strength was established. Replacing the traditional polymers with xanthan gum could enable stable EPB shield TBM operation by reducing equipment load, in addition to offering environmental benefits.