• Title/Summary/Keyword: Alternative fuel oil

Search Result 193, Processing Time 0.021 seconds

Adsorptive Desulfurization of Diesel for Fuel Cell Applications: A Screening Test

  • Ho, Hoang Phuoc;Kim, Woo Hyeong;Lee, So-Yun;Son, Hong-Rok;Kim, Nak Hyeon;Kim, Jae-Kon;Park, Jo-Yong;Woo, Hee Chul
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.88-94
    • /
    • 2014
  • During the past decades much attention has been paid to the desulfurization of diesel oil which is important as a source for the fuel cells to prevent the sulfur poisoning of both diesel steam reforming catalyst and electrode of fuel cell. Although alternative desulfurization techniques have been investigated, desulfurization for ultra-low sulfur diesel (ULSD) is still challenged. Therefore, this research focuses on the desulfurization of commercial ULSD for the application to molten carbonate fuel cell (MCFC). Herein, the performances of several kinds of commercial adsorbents based on activated carbons, zeolites, and metal oxides for desulfurization of ULSD were screened. The results showed that metal oxides based materials can feasibly reduce sulfur concentration in ULSD to a level of 0.1 ppmw while activated carbons and zeolites did not reach this level at current conditions.

Scientometric Analysis for Biodiesel (바이오디젤 학술 정보분석)

  • Noh, Kyung-Ran;Kil, Sang-Cheol;Oh, Mihn-Soo
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.593-602
    • /
    • 2013
  • Biodiesel is an important new alternative transportation fuel and it can be produced by chemically reacting a fat or oil with an alcohol, in the presence of a catalyst. The product of the reaction is a mixture of methyl esters, which are known as biodiesel, and glycerol, which is a high value co-product. The process is known as transesterification. Biodiesel can be used neat and when used as a pure fuel it is known as BD100. However, it is often blended with petroleum-based diesel fuel and when this is done the blend is designated BD5 or BD20(BD20 is a blend of 20% biodiesel and 80% petroleum diesel fuel). Adherence to a quality standard is essential for proper performance of the fuel in the engine and will be necessary for widespread use of biodiesel. In this study, we analyzed 4,144 papers of biodiesel by category, country, institution, keyword etc. from 2001 to 2013 years.

The SIMDIST (Simulated Distillation) Analysis of Distributing Engine Oil (국내 유통 엔진오일 고온모사증류시험 분석)

  • Lim, Young-Kwan;Kim, Jiyeon;Kim, Jong-Ryeol;Ha, Jong-Han
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.632-637
    • /
    • 2017
  • The vehicle lubricant occupies upto 35% in a total lubricant market and engine oil occupies upto 77% in the vehicle lubricant market in Korea. A suitable quality management of the circulating engine oil is necessary for driver and engine protection. But, KS and synthetic engine oil products (involved over 30% synthetic oil) are exempt to any quality management under Petroleum and Alternative Fuel Business Act. It is also known that synthetic oils such as PAO (poly alpha olefin) have excellent properties and performance like anti-wear, varnish control and oxidation stability than those of mineral oils. For this reason, PAO has been used for an engine oil, rotary screw and reciprocating compressor in addition to heavy duty and other extreme service applications. In this study, our research group analyzed the chromatogram pattern for the mineral oil, PAO and mineral oil involved a typical ratio of PAO using SIMDIST (simulated distillation). In the SIMDIST chromatogram, the mineral oil showed a broad peak, while PAO showed a sharp typical peak. Also the oil with a large viscosity grade exhibited a long retention time due to the heavy molecular weight and high boiling point. In particular, the blended mineral oil with 20% PAO sample showed a distinctly different pattern compared to that of using the conventional mineral oil. For monitoring PAO contents in distributing engine oils, we analyzed the SIMDIST for 27 kinds of engine oils which were popularly sold in Korea. The analytic results indicate that all kinds of engine oils showed that PAO contents were below 20% in engine oil products. Moreover, the PAO titled product was found to have a small amount of PAO. Thus, we conclude that the related laws for the proper quality management of synthetic oils are needed to be established.

Degradation Properties and Production of Fuels from Hemicellulose by Acetone-Solvolysis (아세톤 용매분해법에 의한 헤미셀룰로오스의 분해특성 및 연료물질의 생성)

  • Lee, Jong-Jib
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.56-63
    • /
    • 2008
  • In this study, thermochemical degradation of hemicellulose by Acetone-Solvolysis, the effects of reaction temperature, conversion yield, degradation properties and degradation products were investigated. Experiments were performed in a tube reactor by varying reaction temperature from $200{\circ}C$ to $400{\circ}C$ at 40 min of reaction time. The liquid products from pyrolysis-liquefaction of hemicellulose contained various kinds of ketones. ketones, as 4-methyl-3-penten-2-one, 3-methylene-2-pentanone, 22,6-dimethyl-2, 5-heptadien-4-one, 4-methyl-2-pentanone, 5-methyl-2-hexanone, 3,5,5-trimethyl-2-cyclohexen-1-one, and bezenes. as 1,4-dimethylbenzene, 1-methyl-2-(1-methylethyl)-benzene, 1,4-dimethyl-2-(2-methylpropyl)benzene, 4-secbutyl-ethyl benzene, could be used as high-octane-value fuels and fuel additives. Combustion heating value of liquid products from thermochemical conversion processes of hemicellulose was in the range of $6,680{\sim}7,170cal/g$. After 40min of reaction at $400{\circ}C$ in Acetone-Solvolysis of hemicellulose, the energy yield and mass yield was as high as 72.2% and 41.2g oil/100g raw material, respectively.

Degradation Properties and Production of Fuels of Cellulose - Pyrolysis-Liquefaction - (셀룰로오스의 분해특성 및 연료물질 생성 (I) -열분해·액화반응-)

  • Lee, Jong-Jip;Lee, Byeong-Hak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.333-340
    • /
    • 2004
  • In this study, thermochemical degradation by pyrolysis-liquefaction of cellulose, the effects of reaction time, reaction temperature, conversion yield, degradation properties and degradation products were investigated . Experiments were performed in a tube reactor by varying reaction time from 20 to 80 min at $200{\sim}500^\circ{C}$. Combustion heating value of liquid products from thermochemical conversion processes of cellulose was in the range of 6,920~6,960cal/g. After 40min of reaction at $400^\circ{C}$ in pyrolysis-liquefaction of cellulose, the energy yield and mass yield was as high as 54.3% and 34.0g oil/100g raw material, respectively. The liquid products from pyrolysis-liquefaction of cellulose contained various kinds of ketones, phenols and furans. ketones and furans could be used as high-octane-value fuels and fuel additives. However, phenols are not valuable as fuels.

Production of Fuels from an Agricultural by-Product Biomass (농부산물 바이오매스를 이용한 연료물질의 생성)

  • Lee, Jong-Jib
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.85-94
    • /
    • 2007
  • Rice straw, produced as an agricultural by-product, is usable biomass as fuels if depolymerized to monomer unit, because the chemical structure are similar to high octane materials found in gasoline. In this study, parameters of thermochemical degradation by solvolysis reaction of rice straw such as the effect of reaction temperature, reaction time and type of solvent on conversion yield and degradation products were investigated. It was found that the effectiveness of the solvent on the solvolysis reaction was as follows; acetone>cresol>butanol. When acetone was used as a solvent, the highest rice straw conversion was observed to be 91.5% at $500^{\circ}C$, 40 min. Combustion heating value of liquid products from thermochemical conversion processes was in the range of 7,380 cal/g. The energy yield and mass yield in acetone-solvolysis of rice straw was as high as 69.0% and 38.2 g-oil/100g-raw material after 40 min of reaction at $350^{\circ}C$. Various aliphatic and aromatic compounds were detected in the rice straw solvolysis products. The major components of the solvolysis products, that could be used as fuel, were 4-methyl-2-pentanone, 3,5,5-trimethyl-2-cyclopentan-1-one as ketones.

An Assessment of Energy Consumption on Deep Sea Water Cooling System (해양 심층수를 이용한 냉방시스템의 경제성 비교분석)

  • Park, Jin-Youn;Kim, Samuel;Jung, Kyung-Sik;Nam, Min-Sik
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1279-1284
    • /
    • 2008
  • The alternative energy has lately attracted considerable attention due to the high oil price and environment problem. Deep sea water that is one of the natural energy sources should be getting popular continually to reduce the environment problem. In this study, cooling system of deep sea water using heat exchangers of two hotels where is located in near Hae-undae Bay has been analyzed on the quantity of electricity comparison between existing cooling system and deep seawater cooling system. As shortly, the results of study showed that the first building approximately saves 370 millions won per year, also the second building saves 248 millions won per year. It means that the cooling system by using deep sea water has great worth to reduce the ratio of fossil fuel.

  • PDF

Bioenergy Crop Production and Research Trends (바이오에너지 원료작물 생산 및 연구동향)

  • Kim, Kwang-Soo;Kim, Young-Bum;Jang, Young-Seok;Bang, Jin-Ki
    • Journal of Plant Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.103-109
    • /
    • 2007
  • The increasing industrialization of the world has led to precipitous rise for the demand of petroleum-based fuels. The world is presently confronted with the twin crises of fossil fuel depletion and environmental pollution. The search for alternative fuels, which promise a harmonious correlation with sustainable development, energy conservation, efficiency and environmental preservation, has become highly pronounced in the present. Bioenergy is playing an increasingly important role as an alternative and renewable source of energy. Use of Bioenergy has several potential environmental advantages. The most important perhaps is reduction in life cycle greenhouse gases emissions relatives petroleum fuels, since bioenergy is derived from plants which convert Carbon dioxide ($CO_{2}$) into Carbohydrates in their growth. Bioenergy includes solid biomass, biomas and liquid bio-fuels which are fuels derived from crop plants, and include biomass that's directly burned. The two most important bio liquid fuels today are bioethanol from fermenting grain, grass, straw or wood, and biodiesel from plant seed oil.

Decomposition of Liquid Wastes(Waste Oil & Solvents) under High Temperature Conditions (산업단지 발생 액상폐기물(폐유와 폐유기용제)의 고온연소 특성)

  • Kim, Min-Choul;Lee, Jae-Jeong;Suk, Min-Kwang;Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3761-3767
    • /
    • 2009
  • This study was investigated to determine the combustion characteristics, decomposition efficiency, and the flue gas concentrations after combustion in the high temperature reactor($1,250{\sim}1,400^{\circ}C$, 1 atm) for the liquid wastes(waste oil and waste solvent) generated from the industrial complex. The concentration of nitrogen oxide(NOx) is decreased and the synthetic gas is increased when the mass ratio of $O_2$/waste is about 1.53 because the reaction condition was changed to reduction state. And BTEXs(benzene, toluene, ethylbenzene, xylene) are decomposed more than 99.99%. If the highly concentrated liquid waste (waste oil and waste solvent) is treated under the operating conditions suggested by this study, our treatment method for the liquid waste was found to be proper because of the contaminants emission concentration is very low. In addition, the synthetic gas after combustion can be used as an alternative fuel.

Low Carbon and Green Growth Cave Lightings with SOLAR-LED System (SOLAR-LED 시스템과 저탄소녹색동굴조명)

  • Soh, Dea-Wha;Kang, Sang-Tack;Soh, Hyun-Jun
    • Journal of the Speleological Society of Korea
    • /
    • no.95
    • /
    • pp.15-21
    • /
    • 2009
  • Global village warming and carbon dioxide CO2 gas, and the human efforts for their healing and necessary alternative technology would be much more difficult things than that of making necessary funds and efforts to lay to sleep angry nature on the earth. The limited natural resources of fossil fuel would be dried up in several decades, and the intensity of diplomatic negotiations for natural resource guarantee among countries may be showed looking alike an war. The drain of fossil fuel called a new word of alternative policy like an environment-friendly green-growth, and the solar-cell and lighting technology for the solar energy applications were developed still more repeatedly day by day from oil lantern to LED high-tech illumination in great economy. Therefore, it was studied that the low-carbon green-growth illumination technology in cave applications with SOLAR-LED system which was produced and unified in connection with solar-cell and LED from the semiconductor production technology, and it was also clarified in necessary with useful cave lighting in heatless and with no photosynthesis of plant production in underground space.