• Title/Summary/Keyword: Alternative fuel oil

Search Result 193, Processing Time 0.032 seconds

Combustion and NOx Emission Characteristics of the Gas Turbine Combustor Burning Medium-Btu Gas as Alternative Fuel (중발열량 가스 대체 시 가스터빈 연소기의 연소 및 NOx 배출 특성)

  • Lee, Chan;Seo, Je-Young
    • Journal of Energy Engineering
    • /
    • v.12 no.4
    • /
    • pp.320-327
    • /
    • 2003
  • A CFD (Computational fluid Dynamics) research is conducted for the investigation of the fuel alteration of MBTU (medium-Btu) gas in IGCC gas turbine combustor. The computational analysis method of the gas turbine combustor is constructed by incorporating MBTU gas reaction and fuel NOx models into commercial CFD code. With the use of the present analysis method, comparisons are made on the flow velocity, the chemical species and the temperature distributions, and on the flame shape and behavior of gas turbine combustor firing natural gas and MBTU gases (coal gas, heavy residue oil gas). Furthermore, the NOx formation characteristics and the turbine matching condition of the combustor are analyzed. Based on the computed analysis results, the present study provides the directions for the redesign and the design modification of IGCC gas turbine combustor firing MBTU gas as alternative fuel.

CFD Approach on Gas Explosion for SIL in Gas Fuelled Ship

  • Kim, Ki-Pyoung;Kim, You-Taek;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.195-200
    • /
    • 2015
  • It is envisaged that the effect of increasingly stricter air emissions legislation implemented through IMO Annex VI and other local air quality controls, together with favorable financial conditions for the use of natural gas instead of liquid fuel oil as a bunker fuel, will see an increasing number of DF engine and single gas fuel engine applications to LNG carriers and other vessel types. As part of provision for the current international movements in the shipping industry to reduce GHG emission in air, new design concepts using natural gas as an alternative fuel source for propulsion of large commercial vessels, have been developed by shipyards and research institutes. In this study, an explosion analysis for a gas supply machinery room of LNG-fuelled container ship is presented. The gas fuel concept is employed for the high pressure ME-GI where a leakage in the natural gas double supply pipe to the engines is the subject of the present analysis. The consequences of a leak are simulated with computational fluid dynamics (CFD) tools to predict typical leak scenarios, gas cloud sizes and possible explosion pressures. In addition, capacity of the structure which is subject to explosion loads has been assessed.

Analysing NOx and soot formations of an annular chamber with various types of biofuels

  • Joanne Zi Fen, Lim;Nurul Musfirah, Mazlan
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.6
    • /
    • pp.537-551
    • /
    • 2022
  • The rapid decrease of fossil fuel resources and increase of environmental pollution caused by aviation industries have become a severe issue which leads to an increase in the greenhouse effect. The use of biofuel becomes an option to alleviate issues related to unrenewable resources. This study presents a computational simulation of the biofuel combustion characteristics of various alternative fuels in an annular combustion chamber designed for training aircraft. The biofuels used in this study are Sorghum Oil Methyl Ester (SOME), Spirulina Platensis Algae (SPA) and Camelina Hydrotreated Esters and Fatty Acids (CHEFA). Meanwhile, Jet-A is used as a baseline fuel. The fuel properties and combustion characteristics are being investigated and analysed. The results are presented in terms of temperature and pressure profiles in addition to the formation of NOx and soot generated from the combustion chamber. Results obtained show that CHEFA fuel is the most recommended biofuel among all four tested fuels as it is being found that it burns with 37.6% lower temperature, 15.2% lower pressure, 89.5% lower NOx emission and 8.1% lower soot emission compared with the baseline fuel in same combustion chamber geometry with same initial parameters.

Removal of Tar from Biomass Gasification Process (Biomass Gasification 공정에서 발생하는 Tar 제거연구)

  • Kim, Ju-Hoe;Jo, Young-Min;Kim, Jong-Su;Kim, Sang-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.552-561
    • /
    • 2018
  • Biomass, a carbon-neutral resource, is an alternative energy source for exhaustion of fossil fuel and environmental problems. Most of energy production systems using biomass operate with a thermal chemical conversion method. Amongst them, gasification generates syngas and applies to boilers or engines for the production of heat and electricity. However, Tar could be formed during the production of syngas and it is condensed at low temperature which may cause to clog the pipelines and combustion chamber, ultimately resulting in decrease of process efficiency. Thus this work utilized water and oily materials such as soybean oil, waste cooking oil and mineral oil for scrubbing liquid. The removal efficiency of Tar appeared 97%, 70%, 63% and 30% for soybean oil, waste cooking oil, mineral oil and water respectively.

Study on the Fueling Economic Feasibility of Plug-in Hybrid Electric Vehicle (플러그인 하이브리드 전기자동차의 연료 경제성에 관한 연구)

  • Roh, Chul-Woo;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.255-263
    • /
    • 2009
  • The most concerning issue of these days is the energy crisis caused by increasing threat of dependence on imported oil and volatile market trend. Under these circumstances, the PHEV(plug-in hybrid electric vehicle) is drawing attention for the next generation's car which could give a chance to decrease the dependence on imported oil and reduce the environmental impact of vehicle. The fueling cost of PHEV, one of the core factor of decision about buying car, should be calculated in the circumstances of Korea to make sure that PHEV has competitive power in real market. The fuel cost saving of PHEV versus CV(conventional vehicle) is simulated and discussed in the condition of increasing gasoline cost, electricity rate, and city-gas rate. In conclusion, the PHEV60-FS shows the best economic feasibility when gasoline price goes up. The PHEV20 has the most stable economic feasibility as electricity rate increases. The fuel cell cogeneration system for RPG could be an alternative for charger of PHEV in the near future.

Degradation Properties and Production of Fuels from Cellulose - Solvolysis - (셀룰로오스의 분해특성 및 연료물질 생성[II] - 용해분해 반응 -)

  • Lee, Jong-Jib;Lee, Byung-Hak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.159-169
    • /
    • 2005
  • Cellulose, consisted of 45 wt% in wood, is usable as fuels and heavy oil additives if depolymerized to monomer unit, because the chemical structures are similar to high octane materials found in gasoline. In this study, thermochemical degradation by solvolysis reaction of cellulose such as the effect of reaction temperature, reaction time and type of solvent on conversion yield and degradation products were investigated. It was found that the effectiveness of the solvent on the sovolysis reaction was as follows; acetone>n-butanol>tetralin. When acetone was used as a solvent, the highest cellulose conversion was observed to be 91.8% at 500$^{\circ}C$, 40min. Combustion heating value of liquid products from thermochemical conversion processes was in the range of 7,330${\sim}$7,410cal/g. The energy yield and mass yield in acetone-solvolysis of cellulose was as high as 66.8% and 37.0 g oil/100g raw material after 40min of reaction at 400$^{\circ}C$. Various aliphatic and aromatic compounds were detected in the cellulose solvolysis products. The major components of the solvolysis products, that could be used as fuel, were mesityl oxide, mesitylene, isophorone.

Biodiesel Production Technology and Its Fuel Properties (바이오디젤 공정기술과 연료특성)

  • Hong, Yeon Ki;Hong, Won Hi
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.424-432
    • /
    • 2007
  • Biodiesel is gaining more attractive due to its eco-friendly and the fact that it is prepared from renewable sources. It is monoalkyl esters of long chain fatty acids derived from vegetable oils and animal fats via transesterification reaction with alcohol in the presence of catalyst. This paper will review briefly (1) the effect of reaction conditions such as catalyst type, amount of free fatty acid and moisture, molar ratio of alcohol and oil, alcohol type, reaction temperature and time and stirring intesity, (2) downstream process of biodiesel after transesterification reaction, and (3) potentialities of biodiesel as an alternative fuel based on its properties in diesel engines.

An Experimental Study on the Spray and Lean Combustion Characteristics of Bio-enthanol-Gasoline Blended Fuel of GDI (직접분사식 바이오에탄올-가솔린 혼합연료의 분무 및 희박연소 특성에 관한 실험적 연구)

  • Park, Gi-Young;Kang, Seok-Ho;Kim, In-Gu;Lim, Cheol-Soo;Kim, Jae-Man;Cho, Yong-Seok;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.115-122
    • /
    • 2014
  • As a demand for an automobile increases, air pollution and a problem of the energy resources come to the fore in the world. Consequently, governments of every country established ordinances for green-house gas reduction and improvement of air pollution problem. Especially, as international oil price increases, engine using clean energy are being developed competitively with alternative transportation energy sources development policy as the center. Bio ethanol, one of the renewable energy produced from biomass, gained spotlight for transportation energy sources. Studies are in progress to improve fuel supply methods and combustion methods which are key features, one of the engine technologies. DI(Direct Injection), which can reduce fuel consumption rate by injecting fuel directly into the cylinder, is being studied for Green-house gas reduction and fuel economy enhancement at SI(Spark Ignition). GDI(Galoine Direct Injection) has an advantage to meet the regulations for fuel efficiency and $CO_2$ emissions. However it produces increased number of ultrafine particles, that yet received attention in the existing port-injection system, and NOX. As fuel is injected into the cylinder with high-pressure, a proper injection strategy is required by characteristics of a fuel. Especially, when alcohol type fuel is considered. In this study, we tried to get a base data bio-ethanol mixture in GDI, and combustion for optimization. We set fuel mixture rate and fuel injection pressure as parameters and took a picture with a high speed camera after gasoline-ethanol mixture fuel was injected into a constant volume combustion chamber. We figured out spraying characteristic according to parameters. Also, we determine combustion characteristics by measuring emissions and analyzing combustion.

Utilization of fish oil as an alternative fuel for diesel engine (디젤기관용 대체연료로서의 어유 이용)

  • 서정주;왕우경;안수길
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.64-71
    • /
    • 1996
  • 내연기관은 19세기에 발명되어 20세기에 이르는 약 100여년에 걸쳐 계속 발달하여, 오늘날은 육.해.공의 각종 원동기로 사용되어 인간생활에 없어서는 안될 중요한 위치를 차지하고 있다. 사용연료는 거의가 액체연료인 석유계가 대부분을 차지하고 있고, 이의 수요가 날로 증가됨으로써 석유자원의 고갈 위기와 함께 유해성 배출가스의 방출에 기인되는 환경오염의 측면에서도 매우 심각한 문제로 대두되고 있다. 따라서 종래의 석유계 연료로부터 탈피하여 값싸고 장기적으로 안정하게 고급될 수 있는 대체연료 개발과 에너지 절약기술에 대한 다각적인 연구가 전 세계적으로 확산되고 있다. 이러한 대체연료는 단순히 가격면에서 뿐만 아니라 장기적 공급이 가능해야 하고 또한 석유자원의 고갈과 비상시의 대비를 위한 관점에서도 취급되어야 할 것으로 본다. 이러한 관점에서 어유는 어류의 자원이 고갈되지 않는 한 생산이 계속 가능하므로 대체연료로서의 이용가치를 검토할 필요가 있다고 본다. 따라서, 본 해설에서는 디젤기관용 대체연료로서 가격이 싸고 공급이 비교적 용이한 정어리유(sardine oil)를 경유와 여러비율로 혼합한 경유-어유 혼합유를 정용연소기와 선박용 디젤기관에 사용하여 그 연소특성을 기존의 경유 사용시와 비교 설명하고자 한다.

  • PDF

The Effect of Bio-diesel Fuel on Industrial Diesel Engine (바이오디젤 연료가 산업용 디젤 엔진 성능에 미치는 영향)

  • Park, Kweon-Ha;Kim, Ju-Youn;Kim, Chul-Jung;Ko, Jea-Hyun;Park, Hong-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.72-77
    • /
    • 2012
  • An alternative fuel is introduced as an environmentally friendly fuel in order to reduce the toxic emissions from conventional fossil fuels. In this study a bio-diesel fuel is produced and applied into the industrial diesel engine to understand the effect on the performance. The test conditions are loads of idle to maximum torque and engine speeds of 700 to 1900 rpm in bio-diesel blending percents of 0, 10, 20%. The results show that smoke and CO emissions are reduced while NOx in slightly increased, and the effects are rather clear in higher loads.