• Title/Summary/Keyword: Alternative coating

Search Result 154, Processing Time 0.03 seconds

Development of a Water-soluble Dry Lubricant for Nuclear Fuel Rod Protection (핵 연료봉 표면보호를 위한 수용성 건식 윤활제 개발)

  • Chung, Keunwoo;Kim, Young-Wun;Lee, Sangbong;Hong, Jongsung;Han, Sangjae;Oh, Myoungho
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.343-349
    • /
    • 2014
  • Currently, in order to resist the scratching of the fuel rod surface while fabricating the fuel assembly of the light-water nuclear reactor, we use a solution of nitrocellulose, an explosive material, as a dry lubricant along with its solvent. However, the demand for developing safe and harmless aqueous alternative materials for environment-conservation and field-worker safety has increased. In this study, we demonstrate the preparation of a novel aqueous resin composite using a formulation of aqueous polymeric resin, alcoholic solvent, and water. Subsequently, we characterize this composite on the basis of hardness, adhesive property, and water solubility using plates similar to the fuel rod material. The insertion test of a fuel rod coated with the YS-3 composite shows load values of $18.8-20.5kg/cm^2$, which is comparable with $18.8-20.5kg/cm^2$ of the nitrocellulose coating agent. In addition, the depth and width of longitudinal scratches caused by the YS-3 composite test are 50% higher than those of the standard. We can develop a harmless and safe aqueous dry lubricant to replace the existing NC products through field testing of 264 pieces of fuel rods, after producing 350 kg of the YS-3 prototype. The scratch test for the rod surface showed that weight of chip of YS-3 prototype was smaller than that of NC before and after solvent treatment, indicating the properties of YS-3 prototype was comparable to the counterpart.

Fabrication of Ferroelectric BaTiO3Thin Film on Ti Substrate and Formation of Calcium Phosphate in Eagle’s MEM Solution (티타늄 기판 위에 강유전성 BaTiO3박막 형성과 분극처리에 의한 Eagle’s MEM 용액에서의 Calcium Phosphate 생성)

  • Lee, Yong-Ryeol;Jeong, Young-Hwa;Hwang, Kyu-Seog;Song, Ho-Jun;Park, Yeong-Joon
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.560-567
    • /
    • 2002
  • Titanium (Ti) is a bioinert material and has lower elastic coefficient and better strength/volume property than other metals. Ferroelectric materials show alignment of positive and negative charges by poling treatment. This study was purposed to develop a new implant system by combining the advantages of Ti and ferroelectric property of $BaTiO_3$ (BTO). It was performed with the assumption that the $Ca^{2+ }$ ions would be easily attracted on negatively charged surface and the attracted cation might behave as nuclei for bone-like crystal growth in biological solutions. A ferroelectric BTO thin film on Ti was fabricated and the effect of poling treatment on the improvement of calcium phosphate (Ca-P) formation in biological solutions was evaluated. After immersion in Eagle’s minimum essential media (MEM) solution, NaCl was formed on Ti, and Ca-P layer containing NaCl was formed on Ti-O. Weak and sparse Ca-P layers were formed on BTO, while thick, homogeneous, and dense Ca-P layer was formed on negatively polarized BTO (N-BTO), which was confirmed by FE-SEM and EDX. In summary, these results demonstrate that poling the ferroelectric BTO surface negatively is effective for the formation of Ca-P layer in MEM solution, and that N-BTO coating on Ti could be used as a possible alternative method for enhancing the osseointegration of the implants.

A Study on the Characteristics of Low Temperature sintering Ceramic Siding Using Natural Minerals (천연광물을 활용한 저온소결 세라믹 사이딩의 특성에 관한 연구)

  • Kim, Soon-ho;Choi, Jeong-min
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.12
    • /
    • pp.149-156
    • /
    • 2019
  • Recently, skyscraper building and apartment fires, which were rapidly spread out from a low floor to a rooftop, have become a frequent occurrence in mass media. This fire problems have a fatal disadvantage that the exterior wall finish of the building emits toxic gas in case of fire by using dry bit method or organic insulating material. Therefore, in order to remedy these problems, many exterior wall finishing construction methods have been proposed, but the current trend is to use existing construction methods due to problems such as economy, weight, and durability. On the other hand, in countries such as Germany and Japan, ceramic sidings are used as exterior finishing material for buildings, which is environmentally friendly, excellent natural beauty, long life, easy maintenance and high-quality exterior materials. However, those ceramic sidings have still the problems such as manufacturing cost and weight problem because of boosting the sintering temperature up to 1,350℃ or more. Also, conventional CRC, MgO, FRP sidings which are composed of pulp, glass fiber and organic materials, have been reports of deformation due to ultraviolet rays, discoloration, corrosion and scattering, surface rupture, lifting and peeling. Therefore, in this study as an alternative to solve this problem, halosite nano kaolin produced in Sancheong in Korea and frit flux were used to satisfy the required properties as ceramic siding using low temperature sintering (below 1,000℃) and lightweight materials such as pearlite. This study aims to design the optimal formulation and process of materials and to study the characteristics of nano-coated ceramic siding material development and to present relevant basic data. The findings show that ceramic siding for nanocoated building materials is excellent as a natural ceramic siding building material. The fire resistance of natural minerals and nano particle refining technology satisfy the bending strength of 80kgf / cm2, the volume ratio of 2.0 and the absorption rate of less than 10.0%.

Fabrication of SiOx Anode Active Materials Using Spherical Silica Powder and Shape Control Technology (구형 단분산 실리카 분말을 이용한 SiOx 음극활물질 제조 및 형상조절 기술)

  • Ju-Chan Kwon;Bok-Hyun Oh;Sang-Jin Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.530-536
    • /
    • 2023
  • The theoretical capacity of silicon-based anode materials is more than 10 times higher than the capacity of graphite, so silicon can be used as an alternative to graphite anode materials. However, silicon has a much higher contraction and expansion rate due to lithiation of the anode material during the charge and discharge processes, compared to graphite anode materials, resulting in the pulverization of silicon particles during repeated charge and discharge. To compensate for the above issues, there is a growing interest in SiOx materials with a silica or carbon coating to minimize the expansion of the silicon. In this study, spherical silica (SiO2) was synthesized using TEOS as a starting material for the fabrication of such SiOx through heating in a reduction atmosphere. SiOx powder was produced by adding PVA as a carbon source and inducing the reduction of silica by the carbothermal reduction method. The ratio of TEOS to distilled water, the stirring time, and the amount of PVA added were adjusted to induce size and morphology, resulting in uniform nanosized spherical silica particles. For the reduction of the spherical monodisperse silica particles, a nitrogen gas atmosphere mixed with 5 % hydrogen was applied, and oxygen atoms in the silica were selectively removed by the carbothermal reduction method. The produced SiOx powder was characterized by FE-SEM to examine the morphology and size changes of the particles, and XPS and FT-IR were used to examine the x value (O/Si ratio) of the synthesized SiOx.

An Optimization Study on a Low-temperature De-NOx Catalyst Coated on Metallic Monolith for Steel Plant Applications (제철소 적용을 위한 저온형 금속지지체 탈질 코팅촉매 최적화 연구)

  • Lee, Chul-Ho;Choi, Jae Hyung;Kim, Myeong Soo;Seo, Byeong Han;Kang, Cheul Hui;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.332-340
    • /
    • 2021
  • With the recent reinforcement of emission standards, it is necessary to make efforts to reduce NOx from air pollutant-emitting workplaces. The NOx reduction method mainly used in industrial facilities is selective catalytic reduction (SCR), and the most commercial SCR catalyst is the ceramic honeycomb catalyst. This study was carried out to reduce the NOx emitted from steel plants by applying De-NOx catalyst coated on metallic monolith. The De-NOx catalyst was synthesized through the optimized coating technique, and the coated catalyst was uniformly and strongly adhered onto the surface of the metallic monolith according to the air jet erosion and bending test. Due to the good thermal conductivity of metallic monolith, the De-NOx catalyst coated on metallic monolith showed good De-NOx efficiency at low temperatures (200 ~ 250 ℃). In addition, the optimal amount of catalyst coating on the metallic monolith surface was confirmed for the design of an economical catalyst. Based on these results, the De-NOx catalyst of commercial grade size was tested in a semi-pilot De-NOx performance facility under a simulated gas similar to the exhaust gas emitted from a steel plant. Even at a low temperature (200 ℃), it showed excellent performance satisfying the emission standard (less than 60 ppm). Therefore, the De-NOx catalyst coated metallic monolith has good physical and chemical properties and showed a good De-NOx efficiency even with the minimum amount of catalyst. Additionally, it was possible to compact and downsize the SCR reactor through the application of a high-density cell. Therefore, we suggest that the proposed De-NOx catalyst coated metallic monolith may be a good alternative De-NOx catalyst for industrial uses such as steel plants, thermal power plants, incineration plants ships, and construction machinery.

Development of LSM-Coated Crofer Mesh for Current Collectors in Solid Oxide Fuel Cells (LSM이 코팅된 고체산화물 연료전지용 Crofer Mesh 집전체 개발)

  • Baek, Joo-Yul;Park, Seok-Joo;Lee, Seung-Bok;Lee, Jong-Won;Lim, Tak-Hyoung;Song, Rak-Hyun;Kim, Kwang-Bum;Shin, Dong-Ryul
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.256-263
    • /
    • 2010
  • A Crofer 22 APU mesh coated with a conductive ceramic material was developed as an alternative cathode current collector to Ag-based materials for solid oxide fuel cells. $(La_{0.80}Sr_{0.20})_{0.98}MnO_3$ (LSM) layer was deposited onto the Crofer mesh using a spray-coating technique, in an attempt to mitigate the degradation of electrical properties due to surface oxidation at high temperatures. The oxidation experiments at $800^{\circ}C$ in air indicated that the areaspecific resistance (ASR) of the LSM-coated Crofer mesh was strongly dependent on the wire diameter and the contact morphology between mesh and cell. In addition, the post-heat-treatment in $H_2/N_2$ resulted in a reduced thickness of Cr-containing oxide scales at the interface between Crofer mesh and LSM layer, leading to a decreased ASR.

Preparation of Monodispersed Silica-Rubitherm®Microparticles Using Membrane Emulsification and Their Latent Heat Properties (막유화법을 이용한 단분산성 실리카-루비덤® 마이크로 입자의 제조 및 잠열 특성)

  • Kim, Soo-Yeon;Jung, Yeon-Seok;Lee, Sun-Ho;You, Jin-Oh;Youm, Kyung-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.215-225
    • /
    • 2015
  • Recently, the importance of energy saving and alternative energy is significantly increasing due to energy depletion and the phase change material (PCM) research for saving energy is also actively investigating. In this research, the membrane emulsification using SPG membrane was used to make various microencapsulated phase change material (MPCM) particles which were comprised of $Rubitherms^{(R)}$ (RT-21 and RT-24) core and silica coating. We investigated the pressure of the dispersion phase, the concentration of surfactant, and the ratio of $Rubitherm^{(R)}$ and silica to prepare various MPCM particles. The DSC and TGA were used to examine the heat stability and latent heat properties. Also, PSA, SEM, and optical microscopy were used to confirm the size of $Rubitherm^{(R)}$ particles and the thickness of silica shell. The average of particle size was $7-8{\mu}m$. And, FT-IR was also used to enforce the qualitative analysis. Finally, the MPCM particles obtained from membrane emulsification showed monodispersed size distribution and the heat stability and latent heat were kept up to 80% compared to pure $Rubitherm^{(R)}$. So, it can be effectively used for wallpaper, buildings and interior products for energy saving as PCMs.

Development of Effective Screening Method for Efficacy Test of Trunk Injection Agents Against Pine Wood Nematode, Bersaphelenchus xylophilus in Japanese Black Pine, Pinus thunbergii (곰솔(Pinus thunbergii)에서 소나무재선충(Bersaphelenchus xylophilus) 나무주사 약제의 효율적인 평가법 개발)

  • Shin, Won Sik;Jung, Young Hack;Lee, Sang Myeong;Lee, Chae Min;Lee, Chang Joon;Kim, Dong Soo;Mun, Il Sung;Lee, Dong Woon
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.4
    • /
    • pp.440-449
    • /
    • 2015
  • Pine wood nematode (PWN), Bursaphelenchus xylophilus is one of the most serious pests of pine tree. Trunk injection of some nematicides in tree is well known as an effective control method. However there are some limitating factors which hindering the efficacy of trunk injection in field or potted tree. In this study we suggested easy and useful alternative screening methods of nematicides against PWN. Reproduction of PWN was influenced by tree twig moisture (high reproduction in high moisture trig) and paraffin coating was 78.6% reduced moisture loss in tested twig. There were no reproduction different in up and down site from infection site of twig at 1 month after inoculation of PWN and also distance (5 and 10 cm) from inoculation site of PWN did not influence the reproduction of PWN. Numbers of reproduced PWN were higher with decreasing diameter of twig. Numbers of reproduced PWN were similar to P. thunbergii and P. densiflora. However reproduction was increased depending on high inoculation density and longer propagation period. When inoculation of PWN on cut twig injected with emamectin benzoate 2.15% EC and morantel tartrate 8% SL in trunk of Pinus thunbergii in the field, PWN number were significantly reduced than untreated control. We suggest this screening method for PWN control agents.

CELLULAR RESPONSES ON ANODIZED TITANIUM DISCS COATED WITH $1{\alpha}$,25-DIHYDROXYVITAMIN D3 INCORPORATED POLY (D,L-LACTIDE-CO-GLYCOLIDE) (PLGA) NANOPARTICLES

  • Cho, Young-Jin;Heo, Seong-Joo;Koak, Jai-Young;Kim, Seong-Kyun;Lee, Joo-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.6
    • /
    • pp.620-627
    • /
    • 2008
  • STATEMENT OF PROBLEM: A biochemical approach for surface modification has offered an alternative for physicochemical and morphological methods to obtain desirable bone-implant interfaces. PURPOSE: The purpose of the present study was to investigate cell responses to poly (D,L-lactide-co-glycolide) (PLGA)/$1{\alpha}$,25-(OH)$_2D_3$ coating with reference to cellular proliferation and differentiation in vitro. MATERIAL AND METHODS: 96 titanium discs were fabricated and divided into four groups. Group 1 was anodized under 300 V as control. Group 2, 3 and 4 were anodized then coated with 3 ml PLGA/$1{\alpha}$,25-(OH)$_2D_3$ solutions. Amount of the solutions were 2 ul, 20 ul and 200ul respectively. The osteoblast-like Human Osteogenic Sarcoma (HOS) cells were seeded and cultured for 1, 3 and 7 days. MTSbased cell proliferation assay and ALPase activity test were carried out. RESULTS: PLGA nanoparticles were observed as fine, smooth and round and HOS cells attached to the anodized surfaces through strand-like and sheet-like filopodia. After 3 days of culture, the dendritic filopodia were exaggerated and sheet-like cytoplasmic projections covered the coated titanium surfaces. After 3 days of culture, all of the groups showed increased cellular proliferation and the lowest proliferation rate was measured on group 2. Higher amount of incorporated $1{\alpha}$,25-(OH)$_2D_3$ (Group 3 and 4) improved cellular proliferation but the differences were not significant statistically (P > .05). But they increased the rate of ALP activities than the control group at day 3 (P < .05). CONCLUSION: Biodegradable PLGA nanoparticles incorporated with vitamin D metabolite positively affected proliferation and differentiation of cells on the anodized titanium surface.

Recovery of Silicon Wafers from the Waste Solar Cells by H3PO4-NH4HF2-Chelating Agent Mixed Solution (인산-산성불화암모늄-킬레이트제 혼합용액에 의한 폐태양전지로부터 실리콘웨이퍼의 회수)

  • Koo, Su-Jin;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.666-670
    • /
    • 2013
  • Recovery method of silicon wafer from defective products generated from manufacturing process of silicon solar cells was studied. The removal effect of the N layer and antireflection coating (ARC) of the waste solar cell were investigated at room temperature ($25^{\circ}C$) by variation of concentration of $H_3PO_4$, $NH_4HF_2$, and concentration and types of chelating agent. Removal efficiency was the best in the conditions; 10 wt% $H_3PO_4$ 2.0 wt% $NH_4HF_2$, 1.5 wt% Hydantoin. Increasing the concentration of $H_3PO_4$, the surface contamination degree was increased and the thickness of the silicon wafe became thicker than the thickness before surface treatment because of re-adsorption on the silicon wafer surface by electrostatic attraction of the fine particles changed to (+). The etching method by mixed solution of $H_3PO_4$-$NH_4HF_2$-chelating agents was expected to be great as an alternative to conventional RCA cleaning methods and as the recycle method of waste solar cells, because all processes are performed at room temperature, the process is simple, and less wastewater, the removal efficiency of the surface of the solar cell was excellent.