• Title/Summary/Keyword: Alternaria species

Search Result 144, Processing Time 0.016 seconds

Molecular Characterization of Small-Spored Alternaria Species (소형의 포자를 형성하는 Alternaria 균류의 분자생물학적 특징)

  • Kim, Byung-Ryun;Park, Myung-Soo;Cho, Hye-Sun;Yu, Seung-Hun
    • Research in Plant Disease
    • /
    • v.11 no.1
    • /
    • pp.56-65
    • /
    • 2005
  • To establish taxonomic system of morphologically similar species of small-spored Alternaria, phylogenetic analysis of internal transcribed spacer (ITS 1, ITS 2 and 5.8S rDNA) and mitochondrial small subunit (mt SSU) rDNA sequences and URP-PCR fingerprinting analysis from 11 species ofAlternaria were performed. Phylogenetic analysis of ITS and mt SSU rDNA sequences revealed that 10 out of 11 species of the smallspored Alternaria were phylogenetically identical with a bootstrap value of 100%. A. infectoria only was phylogenetically differentiated from the other species. The results suggest that the 10 small-spored Alternaria species are very closely related evolutionally and the markers can not be used for differentiation of the smallspored Alternaria species. URP-PCR fingerprinting analysis from eleven species of smallspored Alternaria using 10 URP primers showed that it was possible to differentiate the species, although genetic similarities were found among the species. The Alternaria sp. from common pokeweed could be distinguished from other species by URP-PCR analysis, and it was considered as a new species. A. infectoria could be easily distinguished from the other 10 species by phylogenetic analysis of ITS and mt SSU rDNA sequences and the URPPCR fingerprinting analysis.

Three Alternaria Species Pathogenic to Sunflower

  • Cho, Hye-Sun;Yu, Seung-Hun
    • The Plant Pathology Journal
    • /
    • v.16 no.6
    • /
    • pp.331-334
    • /
    • 2000
  • Alternaria helianthi and two unreported species of Alternaria in Korea were isolated from lesions of Alternaria leaf spot disease of sunflower. The unrecorded species of Alternaria were identified as A. helianthinficients and A. protenta based on the morphological characteristics of conidiophores and conidia. A. helianthi was the dominant species, although all the three species were associated with the disease. A. helianthi, A. helianthinficiens and A. protenta produced similar symptoms on detached sunflower leaves. This is the first report of A. helianthinficiens and A. protenta pathogenic on sunflower in Korea.

  • PDF

Incidence of Alternaria Species Associated with Watermelon Leaf Blight in Korea

  • Kwon, Oh-Kyu;Jeong, A-Ram;Jeong, Yong-Jik;Kim, Young-Ah;Shim, Jaekyung;Jang, Yoon Jeong;Lee, Gung Pyo;Park, Chang-Jin
    • The Plant Pathology Journal
    • /
    • v.37 no.4
    • /
    • pp.329-338
    • /
    • 2021
  • Alternaria leaf blight is one of the most common diseases in watermelon worldwide. In Korea, however, the Alternaria species causing the watermelon leaf blight have not been investigated thoroughly. A total of 16 Alternaria isolates was recovered from diseased watermelon leaves with leaf blight symptoms, which were collected from 14 fields in Korea. Analysis of internal transcribed spacer (ITS) region, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and RNA polymerase II second largest subunit (RPB2) were not competent to differentiate the Alternaria isolates. On the contrary, analysis of amplicon size of the histone H3 (HIS3) gene successfully differentiated the isolates into three Alternaria subgroups, and further sequence analysis of them identified three Alternaria spp. Alternaria tenuissima, A. gaisen, and A. alternata. Representative Alternaria isolates from three species induced dark brown leaf spot lesions on detached watermelon leaves, indicating that A. tenuissima, A. gaisen, and A. alternata are all causal agents of Alternaria leaf blight. Our results indicate that the Alternaria species associated watermelon leaf blight in Korea is more complex than reported previously. This is the first report regarding the population structure of Alternaria species causing watermelon leaf blight in Korea.

Alternaria in Food: Ecophysiology, Mycotoxin Production and Toxicology

  • Lee, Hyang Burm;Patriarca, Andrea;Magan, Naresh
    • Mycobiology
    • /
    • v.43 no.2
    • /
    • pp.93-106
    • /
    • 2015
  • Alternaria species are common saprophytes or pathogens of a wide range of plants pre- and post-harvest. This review considers the relative importance of Alternaria species, their ecology, competitiveness, production of mycotoxins and the prevalence of the predominant mycotoxins in different food products. The available toxicity data on these toxins and the potential future impacts of Alternaria species and their toxicity in food products pre- and post-harvest are discussed. The growth of Alternaria species is influenced by interacting abiotic factors, especially water activity ($a_w$), temperature and pH. The boundary conditions which allow growth and toxin production have been identified in relation to different matrices including cereal grain, sorghum, cottonseed, tomato, and soya beans. The competitiveness of Alternaria species is related to their water stress tolerance, hydrolytic enzyme production and ability to produce mycotoxins. The relationship between A. tenuissima and other phyllosphere fungi has been examined and the relative competitiveness determined using both an Index of Dominance ($I_D$) and the Niche Overlap Index (NOI) based on carbon-utilisation patterns. The toxicology of some of the Alternaria mycotoxins have been studied; however, some data are still lacking. The isolation of Alternaria toxins in different food products including processed products is reviewed. The future implications of Alternaria colonization/infection and the role of their mycotoxins in food production chains pre- and post-harvest are discussed.

Growth Habits of Alternaria spp. on Naturally Infected Seeds (자연(自然) 이병종자(罹病種子)에서의 Alternaria spp.의 생육습성(生育習性)에 관한 조사(調査))

  • Lee, Du-Yun
    • The Korean Journal of Mycology
    • /
    • v.6 no.1
    • /
    • pp.15-20
    • /
    • 1978
  • The purpose of the present study is to describe growth characteristics of seven species of Alternaria occur on naturally infected seeds, and to set up a guide line for quick identification of the species in connection with routine seed health testing. Host range and economic importance of each species are discussed and described with phototographs. The species studied are Alternaria tenuis, A. brassicicola, A. brassicae, A. raphani, A. dauci Alternaria radicina and A. sesami. Other resembling species are discussed in this paper.

  • PDF

RAPD Analysis of Host-specific Toxin (HST) Producing Alternaria species (기주특이적 독소를 생성하는 Alternaria 병원균군의 RAPD 분석)

  • 김병련;강희완;유승헌;이등정부;갑원철개
    • Korean Journal Plant Pathology
    • /
    • v.14 no.1
    • /
    • pp.92-98
    • /
    • 1998
  • RAPD analysis was performed from four host-specific toxin (HST) producing Alternaria, i.e., A. kikuchiana, A. mali, a. longipes and A. Longipes and A. alternata f. sp. lycopersici, nonpathogenic A. alternata and A. brassicicola to assess their phylogenetic relationship. DNA polymorphism was detected among species (pathotypes) of HST producing Alternaria by PCR amplification and differentiation of the species was recognized by RAPD analysis. Primer OPA-02 was the most profitable among 7 notificated primers for differentiation of the HST producing Alternaria species. UPGMA analysis of the RAPD bands from alternaria spp. revealed that HST producing Alternaria and nonpathogenic a. alternata are closely related.

  • PDF

Alternaria mycotoxins and its incidence in fruits and vegetables

  • Patriarca, Andrea
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.13-13
    • /
    • 2018
  • Alternaria is a ubiquitous fungal genus, widely distributed in the environment and a range of different habitats. It includes both plant pathogenic and saprophytic species, which can affect crops in the field or cause post-harvest spoilage of plant fruits and kernels. Numerous Alternaria species cause damage to agricultural products including cereal grains, fruits and vegetables, and are responsible for severe economic losses worldwide. Most Alternaria species have the ability to produce a variety of secondary metabolites, which may play important roles in plant pathology as well as food quality and safety. Alternariol (AOH), alternariol monomethyl ether (AME), tenuazonic acid (TeA), tentoxin (TEN) and altenuene (ALT) are considered the main Alternaria compounds thought to pose a risk to human health. However, food-borne Alternaria species are able to produce many additional metabolites, whose toxicity has been tested incompletely or not tested at all. Both alternariols are mutagenic and their presence in cereal grain has been associated with high levels of human esophageal cancer in China. TeA exerts cytotoxic and phytotoxic properties, and is acutely toxic in different animal species, causing hemorrhages in several organs. The possible involvement of TA in the etiology of onyalai, a human hematological disorder occurring in Africa, has been suggested. Altertoxins (ALXs) have been found to be more potent mutagens and acutely toxic to mice than AOH and AME. Other metabolites, such as TEN, are reported to be phytotoxins, and their toxicity on animals has not been demonstrated up to now. Vegetable foods infected by Alternaria rot are obviously not suitable for consumption. Thus, whole fresh fruits are not believed to contribute significantly with Alternaria toxins to human exposure. However, processed vegetable products may introduce considerable amounts of these toxins to the human diet if decayed or moldy fruit is not removed before processing. The taxonomy of the genus is not well defined yet, which makes it difficult to establish an accurate relationship between the contaminant species and their associated mycotoxins. Great efforts have been made to organize taxa into subgeneric taxonomic levels, especially for the small-spored, food associated species, which are closely related and constitute the most relevant food pathogens from this genus. Several crops of agricultural value are susceptible to infection by different Alternaria species and can contribute to the entry of Alternaria mycotoxins in the food chain. The distribution of Alternaria species was studied in different commodities grown in Argentina. These food populations were characterized through a polyphasic approach, with special interest in their secondary metabolite profiles, to understand their full chemical potential. Alternaria species associated with tomato, bell pepper, blueberry, apples and wheat cultivated in Argentina showed a surprisingly high metabolomic and mycotoxigenic potential. The natural occurrence of Alternaria toxins in these foods was also investigated. The results here presented will provide background for discussion on regulations for Alternaria toxins in foods.

  • PDF

At Death's Door: Alternaria Pathogenicity Mechanisms

  • Lawrence, Christopher B.;Mitchell, Thomas K.;Craven, Kelly D.;Cho, Yang-Rae;Cramer, Robert A.;Kim, Kwang-Hyung
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.101-111
    • /
    • 2008
  • The fungal genus Alternaria is comprised of many saprophytic and endophytic species, but is most well known as containing many notoriously destructive plant pathogens. There are over 4,000 Alternaria/host associations recorded in the USDA Fungal Host Index ranking the genus 10th among nearly 2,000 fungal genera based on the total number of host records. While few Alternaria species appear to have a sexual stage to their life cycles, the majority lack sexuality altogether. Many pathogenic species of Alternaria are prolific toxin producers, which facilitates their necrotrophic lifestyle. Necrotrophs must kill host cells prior to colonization, and thus these toxins are secreted to facilitate host cell death often by triggering genetically programmed apoptotic pathways or by directly causing cell damage resulting in necrosis. While many species of Alternaria produce toxins with rather broad host ranges, a closely-related group of agronomically important Alternaria species produce selective toxins with a very narrow range often to the cultivar level. Genes that code for and direct the biosynthesis of these host-specific toxins for the Alternaria alternata sensu lato lineages are often contained on small, mostly conditionally dispensable, chromosomes. Besides the role of toxins in Alternaria pathogenesis, relatively few genes and/or gene products have been identified that contribute to or are required for pathogenicity. Recently, the completion of the A. brassicicola genome sequencing project has facilitated the examination of a substantial subset of genes for their role in pathogenicity. In this review, we will highlight the role of toxins in Alternaria pathogenesis and the use of A. brassicicola as a model representative for basic virulence studies for the genus as a whole. The current status of these research efforts will be discussed.

Taxonomic Studies on Alternaria in Korea(1)

  • Cho, Hye-Sun;Kim, Byung-Ryun;Yu, Seung-Hun
    • Mycobiology
    • /
    • v.29 no.1
    • /
    • pp.27-42
    • /
    • 2001
  • The taxonomy of the Alternaria spp. has been a subject, of controversy because of their high variability in conidial morphology and polymorphism displayed even in pure cultures. The published Korean literature on the genus Alternaria is scattered and fragmentary, and pertains to about 25 species with special emphasis on occurrence and pathogenicity, but mycological studies on this group of fungi are insufficient. This is the first series of detailed and consolidated account of Korean species of Alternaria, which includes 11 species; viz., Alternaria brassicae, A. brassicicola, A. cinerariae, A. dauci, A. dianthi, A. dianthicola, A. helianthi, A. helianthinffciens, A. iridicola, A. japonica and A. protenta. Detailed diagnostic descriptions, specific characterizations, taxonomic discussions and illustrations for each species are presented.

  • PDF

Incidence of Altermaria Species in Red Pepper and Sesame from Korea and Their Ability to Produce Mycotoxins (한국산 고추와 참깨에 발생하는 Alternaria의 종류와 이들의 진균독소 생성능력)

  • 이향범;유승헌
    • Korean Journal Plant Pathology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 1995
  • Alternaria alternata and A. solani were identified from 130 Alternaria isolates obtained from red pepper fruits, and three species including A. alternata, A. sesami and A. sesamicola were detected from 150 isolates from sesame seeds. Among the 4 Alternaria species, A. alternata was the predominant fungus from both plants, having incidence of 95.4% in red pepper and 56.0% in sesame. Of the total 280 isolates, cultures on autoclaved rice of 75 isolates were tested for toxicity to 21-day-old virgin female rats. Out of 50 isolates of A. alternata, 17 were lethal to rats, inducing congestion and hemorrhage of stomach and intestine and kidney enlargement, and 8 caused lack of weight gain or weight loss. The other 25 isolates of A. alternat and all the isolates of A. sesami, A. sesamicola and A. solani, showed no significant indication of toxicity. Production of mycotoxins in the rice cultures of the above 75 isolates belonging to 4 species was analyzed. Alternaria cultures were extracted with methanol and purified by using solvent partition, thin-layer chromatography, and high performance liquid chromatography. Of the four species tested, all produced alternariol (AOH) and alternariol monomethyl ether (AME), three (A. alternata, A. sesami and A. sesamicola) produced alternuene (ALT) and altertoxin-I (ATX-I), and only A. alternata produced tenuazonic acid (TA). TA was produced by all of the highly toxic (lethal to rats) isolates of A. alternata, but not by any nontoxic isolates.

  • PDF