• Title/Summary/Keyword: Alpha-type hemihydrate gypsum

Search Result 5, Processing Time 0.022 seconds

Mechanical Properties of PHC Pile Concrete using Alpha-type Hemihydrate Gypsum (알파형 반수석고를 활용한 PHC 파일 콘크리트의 역학적 특성)

  • Hong-Seop Kim;Kyoung-Su Shin;Do-Gyeum Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.25-32
    • /
    • 2024
  • In this study, the mechanical properties of PHC pile concrete using alpha-type hemihydrate gypsum were evaluated. As the replacement ratio of alpha-type hemihydrate gypsum increased, the setting time rapidly accelerated. In particular, when replacement ratio exceeded 20 %, the setting time was shortened due to rapid hydration reaction, making it impossible to secure working time. As the replacement ratio of alpha-type hemihydrate gypsum increased, the ettringite and gypsum peaks tended to increase, and it is believed that the shrinkage of concrete decreased due to the increase in the ettringite peak. At a As the replacement ratio of 5 to 15 % for alpha-type hemihydrate gypsum, the compressive strength increased or was found to be equivalent to that of OPC. But at 20 % substitution, workability deteriorated due to rapid setting, so use of the 5 to 15 % range is considered appropriate.

Experimental study on Properties of Dry Shrinkage Deformation of Floor Dry-mortar with Alpha-hemihydrate Gypsum (알파반수석고를 활용한 바닥용 건조 모르타르의 수축변형 특성에 관한 실험적 연구)

  • Kim, Rae-Hwan;Kim, Gyu-Yong;Lee, Bo-Kyeong;Kim, Jung-Hyun;Han, Sang-Hyu;Choe, Gyeong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.158-159
    • /
    • 2014
  • In general, the shrinkage occurring in the floor mortar is large the influence by the dry shrinkage. In order to reduce the cracks occurring in the floor mortar, studies of physical methods are often performed, but these methods is difficult to prevent cracking of the floor mortar essentially. Therefore, in this study, the dry shrinkage properties of floor mortar of gypsum and red clay type using alpha-hemihydrate gypsum had been evaluated. The experimental variables were cement mortar(CM), gypsum mortar(GM), red-clay mortar(RM), the evaluation items was conducted experiment to evaluate the setting time, the compressive strength, drying shrinkage cracks, the dry shrinkage. As a result, it was confirmed that condensation time of GM is shorter that that of CM, and GM satisfied the compressive strength of the floor mortar standard. Also shrinkage deformation of GM reduced more than the CM.

  • PDF

Evaluation of Hardening Properties and Dry Shrinkage of Non-Sintered Binder Based Floor Mortar Utilizing Alpha-Hemihydrate Gypsum (알파반수석고를 활용한 비소성결합재 기반 바닥 모르타르의 경화특성 및 건조수축 평가)

  • Lee, Kye-Hyouk;Kim, Gyu-Yong;Lee, Bo-Kyeong;Kim, Rae-Hwan;Shin, Kyoung-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.359-365
    • /
    • 2015
  • Floor mortar experiences dry shrinkage by temperature and humidity difference of internal matrix with material type. Also, since floor mortar is influenced by environmental conditions during placing and curing period, cracks are likely to be occurred. In this study, it was evaluated the hardening and dry shrinkage properties of non-sintered binder based floor mortar utilizing alpha-hemihydrate gypsum which has expansibility in order to prevent crack of the floor mortar. It was applied to the construction site, and examined the effects of external environmental conditions on shrinkage deformation and cracking. Different types of slag accelerated initial and final setting in comparison with cement mortar and its compressive strength was satisfied standard compressive strength for floor mortar. Also shrinkage deformation behavior after the initial expansion exhibited a similar tendency with the cement mortar. From the field application result, no crack was found from slag mortar, and it is determined that the slag mortar has better dimensional stability than cement mortar caused by external environment conditions.

Strength and Durability Characteristics of Low-alkali Mortar for Artificial Reefs Produced by 3D Printers (인공어초 3D 프린터 출력을 위한 저알칼리 모르타르의 강도와 내구성능)

  • Lee, Byung-Jae;Kim, Bong-Kyun;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.67-72
    • /
    • 2022
  • Concrete prevents corrosion of reinforcing bars due to its strong alkalinity. However, in the sea, strong alkali components with a pH of 12 to 13 are eluted, which adversely affects the ecological environment and growth of marine organisms. In this study, the mechanical properties and durability of the low alkali mortar were evaluated for the development of a low alkali mortar for the 3D printed artificial reefs. As a result of evaluation of strength characteristics, the α-35 mixture, which were produced with fly ash, silica fume and α-hemihydrate gypsum, satisfied the strength requirement 27 MPa in terms of compressive strength. As a result of pH measurement, it was found that mixing with alpha-type hemihydrate gypsum resulted in minimizing pH due to the the formation of calcium sulfate instead of calcium hydroxide production. As a result of the chloride ion penetration resistance test, the α-35 mixture exhibited the best performance, 3844C. As a result of measuring the length change over time, the α-35 mixture showed the shrinkage 33.5% less compared to the Plain mix.

Performance Evaluation of Cement Composite Using Multi-Component Binder for Artificial Reef Produced by 3D Printer (인공어초 3D 프린팅 제작을 위한 다성분계 결합재 기반 시멘트 복합체의 성능 평가)

  • Seo, Ji-Seok;Kim, Hyo-Jung;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.139-147
    • /
    • 2022
  • In this study, we designed a high-strength, low-alkali type cement composite for artificial reef by mixing various binders and evaluated whether it is possible to manufacture it with an ME method 3D printer. As a result of the tests, it is found that it is important to control the water-binder ratio, the silica sand-binder ratio, and the type of silica sand in order to control the fluidity of the cement composites to enable 3D printing. The surface quality of 3D printer output can be achieved by adjusting the amount of viscosity agent added while obtaining printable fluidity. In the cement composites mixing proportion using the alpha-type hemihydrate gypsum, a setting control agent needs to be used to control the quick setting effect. It is also necessary to derive the time to maintain the fluidity, and to apply it when printing. To obtain the required strength, the mix proportion needs to be modified while satisfying the fluidity level of 3D-printable cement composites. In the present study, 3D-printable mix proportions were designed by the use of multi-component binders including alpha-type hemihydrate gypsum a for low-alkali type artificial reefs, and the printability was confirmed. A further study needs to be performed to quantitatively evaluate the alkali reduction effect.