• Title/Summary/Keyword: Alpha-1-antitrypsin

Search Result 56, Processing Time 0.027 seconds

Human $\alpha_1$-Antitrypsin Variant with Enhanced Conformational Stability at the Cost of Activity

  • Seo, Eun-Joo;Hana Im;Yu, Myeong-Hee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1997.07a
    • /
    • pp.39-39
    • /
    • 1997
  • Native strain of inhibitory SERPINS (Serine protease inhibitors) is thought to be used in the facile conformational switch to play biological regulation. Many heat stable variants of $\alpha$$_1$-antitrypsin, a prototype of inhibitory serpins, increased their stability by reducing the native strain.(omitted)

  • PDF

Investigation of Alpha 1-Proteinase Inhibitor in Serum and Specimen of Lung Cancer Patients (폐암 환자의 혈청과 조직 표본상에서 Alpha 1-Proteinase Inhibitor의 조사 연구)

  • 김송명
    • Journal of Chest Surgery
    • /
    • v.27 no.5
    • /
    • pp.364-373
    • /
    • 1994
  • Alpha 1-Proteinase inhibitor[PI] was known as a major protective enzyme against to excessive hydrolytic and proteolytic reaction. So, it was suggested that Alpha 1-PI may implicated in growth of bronchogenic cancer. This study was undertaken to investigate the role of Alpha 1-PI in local invasion of bronchogenic cancer. Three groups of patients were studied; Preliminary research group of 15 bronchogenic cancer patients, Main research group of 13 bronchogenic cancer patients and Normal control group of 10 nephrectomy donor. Serum Alpha 1-PI level was observed in each group of patients during pre-and postoperative days. Pre-operative serum Alpha 1-PI level in preliminary research group [329.2$\pm$14.21mg/dl]and main research group[406.2$\pm$39.30mg/dl] were higher than in normal control group[236.2$\pm$19.55mg/dl] significantly[p<0.005]. Serial Alpha 1-PI level in each group during pre-and postoperative days shows peaked at 3rd. postoperative day in preliminary and main research group, thereafter decreased gradually. Immunohistochemical study for Alpha 1-antitrypsin[A1AT] was carried out by ABC[avidin-biotin peroxidase complex] method using Alpha-1 antitrypsin DAKOR to tumor tissues of 13 lung cancer patients in main research group. 6 cases[46.2%, squamous cell ca.;5, adenocarcinoma;1] of above 13 cases show positive immunoreactivity for A1AT. In conclusion, alpha 1-PI and elastase are disclosed that have defined actions for lung cancer growing or spreading.

  • PDF

Conformational Switch of the Strained Native Serpin Induced by Chemical Cleavage of the Reactive Center Loop

  • Im, Ha-Na;Yu, Myeong-Hee
    • BMB Reports
    • /
    • v.33 no.5
    • /
    • pp.379-384
    • /
    • 2000
  • The native conformation of serpins (serine protease inhibitors) is strained. Upon cleavage of the reactive center loop of serpins by a protease, the amino terminal portion of the cleaved loop is inserted into the central ${\beta}-sheet$, A sheet, as the fourth strand, with the concomitant release of the native strain. We questioned the role of protease in this conformational switch from the strained native form into a stable relaxed state. Chemical cleavage of the reactive center loop of ${\alpha}_1-antitrypsin$, a prototype serpin, using hydroxylamine dramatically increased the stability of the serpin. A circular dichroism spectrum and peptide binding study suggests that the amino terminal portion of the reactive center loop is inserted into the A sheet in the chemically-cleaved ${\alpha}_1-antitrypsin$, as in the enzymatically-cleaved molecule. These results indicate that the structural transformation of a serpin molecule does not require interaction with a protease. The results suggest that the serpin conformational switch that occurred during the complex formation with a target protease is induced by the cleavage of the reactive center loop per se.

  • PDF

Conformational Switch and Functional Regulation of Proteins (단백질의 구조 전환과 기능 조절)

  • 유명희
    • Electrical & Electronic Materials
    • /
    • v.14 no.12
    • /
    • pp.3-6
    • /
    • 2001
  • In common globular proteins, the native form is n its most stable state. However, the native form of inhibitory serpins (serine protease inhibitors) and some viral membrane fusion proteins is in a metastable state. Metastability in these proteins is critical to their biological functions. Our previous studies revealed that unusual interactions, such as side-chain overpacking, buried polar groups, surface hydrophobic pockets, ad internal cavities are the structural basis of the native metastability. To understand the mechanism by which these structural defects regulate protein functions, cavity-filling mutations of $\alpha$1-antitrypsin, a prototype serpin, were characterized. Increasing conformational stability is correlated with decreasing inhibitory activity. Moreover, the activity loss appears to correlate with the decrease in the rate of the conformational switch during complex formation with a target protease. We also increased the stability of $\alpha$1-antitrypsin greatly via combining various stabilizing single amino acid substitutions that were distributed throughout the molecule. The results showed that a substantial increase of stability, over 13 kcal/mol, affected the inhibitory activity with a correlation of 11% activity loss per kcal/mol. The results strongly suggest that the native metastability of proteins is indeed a structural design that regulates protein functions and that the native strain of $\alpha$1-antitrypsin distributed throughout the molecule regulates the inhibitory function in a concerted manner.

  • PDF

Conformational Switch and Functional Regulation of Proteins (단백질의 구조 전환과 기능 조절)

  • 유명희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.3-6
    • /
    • 2001
  • In common globular proteins, the native form is in its most stable state. However, the native form of inhibitory serpins (serine protease inhibitors) and some viral membrane fusion proteins is in a metastable state. Metastability in these Proteins is critical to their biological functions. Our previous studies revealed that unusual interactions, such as side-chain overpacking, buried polar groups, surface hydrophobic pockets, and internal cavities are the structural basis of the native metastability. To understand the mechanism by which these structural defects regulate protein functions, cavity-filling mutations of ${\alpha}$1-antitrypsin, a prototype serpin, were characterized. Increasing conformational stability is correlated with decreasing inhibitory activity. Moreover, the activity loss appears to correlate with the decrease in the rate of the conformational switch during complex formation with a target protease. We also increased the stability of ${\alpha}$1-antitrypsin greatly via combining various stabilizing single amino acid substitutions that were distributed throughout the molecule. The results showed that a substantial increase of stability, over 13 kcal/mol, affected the inhibitory activity with a correlation of 11% activity loss per kcal/mol. The results strongly suggest that the native metastability of proteins is indeed a structural design that regulates protein functions and that the native strain of e 1-antitrypsin distributed throughout the molecule regulates the inhibitory function in a concerted manner.

  • PDF

Effect of Defined KSOM Medium on the Development of 1-antitrypsin Transgenic Nuclear Transfer Bovine Embryos

  • M.M.U. Bhuiyan;J.K. Cho;G. Jang;Park, E.S.;S.K. Kang;Lee, B.C.;W.S. Hwang
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.74-74
    • /
    • 2002
  • Production of u 1-antitrypsin ($\alpha$AT) in transgenic cows has a great value in the field of medicine. The present study was conducted to determine the effect of chemically defined KSOM media on in vitro development of bovine transgenic nuclear transfer (NT) embryos. An expression plasmid for human $\alpha$AT was constructed by inserting a bovine beta-casein promoter, a green fluorescent protein (GFP) marker gene, and a human $\alpha$AT target gene into a pcDNA3 plasmid. Cumulus cells as donor nuclei in NT were collected from a Holstein cow and transfected by lipid-mediated method using FuGene6 (Roche Molecular Biochemicals, USA) as reagent. GFP expressed cumulus cells were introduced into recipient oocytes under DIC microscopy equipped with FITC filter set. After electrical fusion and chemical activation, reconstructed embryos were cultured in 1) SOF + 0.8% BSA, 2) KSOM + 0.8% BSA, 3) KSOM + 10% FBS and 4) KSOM +0.01% PVA for 192 h at 39$^{\circ}C$ with 5% $CO_2$, 5% $O_2$ and 90% $N_2$in humidified condition. The development of the embryos was recorded and the GFP expression in blastocyst was determined under FITC filter. The average fusion rate was 73.8% (251/340; n=8). The development rates to 2-4 cells, morula, blastocysts and expression rates in blastocysts varied from 70.3 to 76.5%, 30.2 to 33.8%, 25.4 to 33.8% and 11.8 to 15.6%, respectively. The difference in development and expression rates of embryos among 4 culture groups was not significant (P>0.05). This study indicates that chemically defined KSOM medium is also able to support development of bovine transgenic NT embryos at similar rate of SOF or KSOM supplemented with BSA or serum.

  • PDF

Prevalence of ${\alpha}_1$-Antitrypsin Genotypes in Koreans (한국인에서 알파 1-항트럽신의 유전형)

  • Park, Jae-Yong;Choi, Jin-Eun;Cha, Seung-Ick;Bae, Nack-Cheon;Chae, Po-Hee;Lee, Jae-Yook;Kang, Young-Mo;Kim, Chang-Ho;Jung, Tae-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.2
    • /
    • pp.229-235
    • /
    • 2001
  • Background : Alpha-1-antitrypsin (A1AT) deficiency is the only established genetic risk factor for emphysema. This study was undertaken to investigate the prevalence of the genotypes of A1AT genotypes in healthy Koreans. Method : The study population consisted of 380 Healthy Koreans enrolled at the Health Promotion Center in Kyungpook National University Hospital. The polymerase chain reaction (PCR) and restriction fragment length polymorphim (RFLP) for detecting the A1AT variants M1(Ala), M1(Val), M2, S and Z were used. Results : The genotypes of subjects were as follows : M1(Val)/M1(Val), 254(66.8%) ; M1(Val)/M2, 105(27.6%) ; M2/M2, 19 (5.0%) ; and M1(Val)/M1(Ala), 2 (0.5%). There was no case with 'deficiency' alleles such as S and Z found in this study. Conclusion : These results suggest that A1AT deficient alleles are either extremely rare or not present in Koreans.

  • PDF

Energy Loading in the Metastable Native Structure of Inhibitory Serpins

  • Hana Im;Seo, Eun-Joo;Yu, Myeong-Hee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1998.06a
    • /
    • pp.23-23
    • /
    • 1998
  • To understand structural and functional basis of loaded energy in the metastable native structure of inhibitory serpins (serine protease inhibitors), we characterized mutations that decreased the loaded energy of ${\alpha}$$_1$-antitrypsin and simultaneously influenced its inhibitory activity. Various folding defects such as side-chain locking, buried polar groups in unfavorable hydrophobic environment, and cavities were found as the structural basis of the metastability of ${\alpha}$$_1$-antitrypsin in a region presumably directly involved in the formation of complex between the inhibitor and a target protease.(omitted)

  • PDF

Probing the Movement of Helix F of $\alpha_1$-Antitrypsin

  • Baek, Je-Hyun;Kim, Jun;Yu, Myeong-Hee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.31-31
    • /
    • 2002
  • $\alpha$$_1$-Antitrypsin is a member of the serine protease inhibitor (serpin) family that share a common tertiary structure. The reactive site loop (RSL) of serpins is exposed at one end of the molecule for protease binding. Upon cleavage by a target protease, the RSL is inserted into the major $\beta$-sheet A, which is a necessary process for formation of a tight inhibitory complex.(omitted)

  • PDF