• Title/Summary/Keyword: Alpha phase

Search Result 1,603, Processing Time 0.031 seconds

Effect of Applied Pressure on Microstructure and Mechanical Properties for Spark Plasma Sintered Titanium from CP-Ti Powders (CP-Ti 분말로부터 스파크 플라즈마 소결한 타이타늄의 미세구조와 기계적 성질에 미치는 가압력의 영향)

  • Cho, Kyeong-Sik;Song, In-Beom;Kim, Jae;Oh, Myung-Hoon;Hong, Jae-Keun;Park, Nho-Kwang
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.678-685
    • /
    • 2011
  • The aim of this study was to determine the effect of applied pressure and sintering temperature on the microstructure and mechanical properties for spark plasma sintering (SPS) from commercial pure titanium (CP-Ti) powders. Spark plasma sintering is a relatively new sintering technique in powder metallurgy which is capable of sintering metal and ceramic powers quickly to full density at a fairly low temperature due to its unique features. SPS of -200 mesh or -400 mesh CP-Ti powders was carried out in an $Ar+H_2$ mixed gas flowing atmosphere between $650^{\circ}C$ and $750^{\circ}C$ under 10 to 80 MPa pressure. When SPS was carried out at relatively low temperatures ($650^{\circ}C$ to $750^{\circ}C$), the high (>60 MPa) pressure had a marked effect on densification and grain growth suppression. The full density of titanium was achieved at temperatures and pressures above $700^{\circ}C$ and 60 MPa by spark plasma sintering. The crystalline phase and microstructure of titanium sintered up to $700^{\circ}C$ consisted of ${\alpha}$-Ti and equiaxed grains. Vickers hardness ranging from 293 to 362 Hv and strength ranging from 304 to 410 MPa were achieved for spark plasma sintered titanium.

RELATION BETWEEN MICROSTRUCTURE AND SOFT MAGNETIC PROPERTIES OF Fe-TM-C-N (TM:Hf, Zr AND Nb) NANOCRYSTALLINE FILMS

  • Ryu, H.J.;Choi, J.O.;Han, S.H.;Kim, H.J.;Lee, J.J.;Kang, I.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.519-523
    • /
    • 1995
  • The Fe-TM-C-N nanocrystalline films (TM : Hf, Zr and Nb) are investigated to examine the relation between microstructure and soft magnetic properties. In these films, as the atomic radius of TM element increases, $P_{N2}$ which was added to get good soft magnetic properties was decreased and the maximum value of the permeability shifted to the high Fe range in the composition diagram. The best soft magnetic properties achieved in these films are : Hc of 0.15 Oe, $\mu_{eff}$ of 7800 (1MHz) and $4{\pi}M_{s}$ of 17.5 kG in Fe-Hf-C-N film ; Hc of 0.06 Oe, $\mu_{eff}$ of 2750 (1MHz) and $4{\pi}M_{s}$ of 16.8 kG in Fe-Zr-C-N film and Hc of 0.31 Oe; $\mu_{eff}$ of 2100 (1MHz) and $4{\pi}M_{s}$ of 15.5 kG in Fe-Nb-C-N film. It was considered that the stronger the bonding force between TM and C(N), the finer TM(C,N) phase is precipitated and therefore, the finer $\alpha$-Fe grains are formed. The effective permeability of the Fe-Zr-C-N films and Fe-Nb-C-N films remains nearly constant up to 10 MHz.

  • PDF

Depilatory creams increase the number of hair follicles, and dermal fibroblasts expressing interleukin-6, tumor necrosis factor-α, and tumor necrosis factor-β in mouse skin

  • Tsai, Pi-Fen;Chou, Fen-Pi;Yu, Ting-Shuan;Lee, Huei-Jane;Chiu, Chun-Tang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.497-506
    • /
    • 2021
  • Besides using for hair removal, depilatory agents have been considered to be used as a penetration enhancer for transepidermal drug delivery. To examine the effect in hair follicles (HFs), two commercially available depilatory creams were tested on the dorsal skin of mice to monitor the effect deep into the skin structure. Fifteen male BALB/c mice were used in this study. Depilatory creams were applied to the dorsal skin of the same animal using shaved and untouched treatments as controls to minimize individual differences. Skin samples were collected at three days, one week and two weeks (n = 5 for each) after the treatment, and subjected for hematoxylin-eosin staining, and immunohistochemical analysis for proinflammatory cytokines. The morphological examination showed an increase in the thickness of epidermal layer of the depilatory cream-treated skin at early time points and in the subcutis at two weeks. Depilatory cream promoted entry of anagen phase and increased the number of hair follicles in the subcutis at one and two weeks. Immunohistochemistry showed elevated percentages of dermal fibroblasts expressing interleukin-6, tumor necrosis factor-α, and tumor necrosis factor-β. Shaving process increased the thickness of epidermis and dermis as depilatory creams did, but did neither induce the expression of proinflammatory cytokines in the dermal fibroblasts nor the number of HFs. The results suggested that the commercially available depilatory creams caused a transient minor inflammatory response of the skin and increased the levels of cytokines that might subsequently affect hair growth.

Tailoring the Dielectric and Mechanical Properties of Si3N4 Ceramics (질화규소 세라믹의 유전 및 기계적 특성 제어에 관한 연구)

  • Lee, Seung Jun;Yong, Seok-Min;Park, Jin-Woo;Choi, Jaeho;Baek, Seungsu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.760-766
    • /
    • 2018
  • The present study investigates the effect of PMMA and BN content on microstructure, mechanical and dielectric properties of silicon nitride($Si_3N_4$) ceramics in $Y_2O_3-Al_2O_3$ additive system. The total additive content was fixed at 8 wt.% and the amount of PMMA varies from 0 to 40 wt.% and BN varies from 0 to 36 wt.%, respectively. The crystalline phases of the samples were determined by X-ray diffraction analysis. All the sintered sample shows complete transformation of ${\alpha}$ to ${\beta}-Si_3N_4$ during the sintering process indicated that the phase transformation was unaffected by the PMMA or BN content. However, the microstructure shows that the residual porosity increased with increasing PMMA and BN content. In addition, the flexural strength and the dielectric constant decrease with addition of PMMA and BN due to the residual porosity. This article provides empirical study of design parameters for $Si_3N_4$-based radome materials.

Immunization with Brucella abortus recombinant proteins protects BALB/c mice from Brucella abortus 544 infection

  • Arayan, Lauren Togonon;Tran, Xuan Ngoc Huy;Reyes, Alisha Wehdnesday Bernardo;Huynh, Tan Hop;Vu, Hai Son;Min, WonGi;Lee, Hu Jang;Kim, Suk
    • Journal of Preventive Veterinary Medicine
    • /
    • v.42 no.4
    • /
    • pp.157-162
    • /
    • 2018
  • This study evaluated the protective effects of a combination of eight B. abortus recombinant proteins that were cloned and expressed into a pMal vector system and $DH5{\alpha}$: nucleoside diphosphate kinase (rNdk), 50S ribosomal protein (rL7/L12), malate dehydrogenase (rMDH), DNA starvation/stationary phase protection protein (rDps), elongation factor (rTsf), arginase (rRocF), superoxide dismutase (rSodC), and riboflavin synthase subunit beta (rRibH). The proteins were induced, purified, and administered intraperitoneally into BALB/c mice. The mice were immunized three times at weeks 0, 2, and 5 and then infected intraperitoneally (IP) with $5{\times}10^4CFU$ of virulent B. abortus 544 one week after the last immunization. The spleens were collected and the bacterial burden was evaluated at four weeks post-infection. The results showed that this combination produced a significant reduction of the bacterial burden in the spleen with a log reduction of 1.01 compared to the PBS group. Cytokine analysis revealed induction of the cell-mediated immune response in that TNF (tumor necrosis factor) and proinflammatory cytokines IL-6 (Interleukin 6) and MCP-1 (macrophage chemoattractant protein-1) were elevated significantly. In summary, vaccination with a combination of eight different proteins induced a significant protective effect indicative of a cell mediated immune response.

In-Situ Fabrication of TCP/Al2O3 and Fluorapatite/Al2O3 Composites by Normal Sintering of Hydroxyapatite and Al2O3 Powder Mixtures (Hydroxyapatite와 Al2O3 혼합분말의 상압소결에 의한 TCP/Al2O3 및 Fluorapatite/Al2O3 복합재료의 In-Situ 제조)

  • Ha, Jung-Soo;Han, Yoo-Jeong
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.129-135
    • /
    • 2019
  • A powder mixture of 70 wt% $Al_2O_3$ and 30 wt% hydroxyapatite (HA) is sintered at $1300^{\circ}C$ or $1350^{\circ}C$ for 2 h at normal pressure. An $MgF_2$-added composition to make HA into fluorapatite (FA) is also prepared for comparison. The samples without $MgF_2$ show ${\alpha}$ & ${\beta}$-tricalcium phosphates (TCPs) and $Al_2O_3$ phases with no HA at either of the sintering temperatures. In the case of $1,350^{\circ}C$, a $CaAl_4O_7$ phase is also found. Densification values are 69 and 78 %, and strengths are 156 and 104 MPa for 1,300 and $1,350^{\circ}C$, respectively. Because the decomposition of HA produces a $H_2O$ vapor, fewer large pores of $5-6{\mu}m$ form at $1,300^{\circ}C$. The $MgF_2$-added samples show FA and $Al_2O_3$ phases with no TCP. Densification values are 79 and 87 %, and strengths are 104 and 143 MPa for 1,300 and $1,350^{\circ}C$, respectively. No large pores are observed, and the grain size of FA ($1-2{\mu}m$) is bigger than that of TCP ($0.7{\mu}m{\geq}$) in the samples without $MgF_2$. The resulting $TCP/Al_2O_3$ and $FA/Al_2O_3$ composites fabricated in situ exhibit strengths 6-10 times higher than monolithic TCP and HA.

Effect of Single and Dual Doping of Rare Earth Metal Ce and Nd Elements on Electrochemical Properties of LiNi0.83 Co0.11Mn0.06O2Cathode Lithium-ion Battery Material (리튬이온전지용 양극활물질 LiNi0.83 Co0.11Mn0.06O2의 전기화학적 특성에 미치는 Ce와 Nd 희토류 금속의 단독 혹은 이중 도핑효과)

  • Kim, Yoo-Young;Ha, Jong-Keun;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2019
  • Layered $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode materials single- and dual-doped by the rare-earth elements Ce and Nd are successfully fabricated by using a coprecipitation-assisted solid-phase method. For comparison purposes, non-doping pristine $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode material is also prepared using the same method. The crystal structure, morphology, and electrochemical performances are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) mapping, and electrochemical techniques. The XRD data demonstrates that all prepared samples maintain a typical ${\alpha}-NaFeO_2$-layered structure with the R-3m space group, and that the doped samples with Ce and/or Nd have lower cation mixing than that of pristine samples without doping. The results of SEM and EDS show that doped elements are uniformly distributed in all samples. The electrochemical performances of all doped samples are better than those of pristine samples without doping. In addition, the Ce/Nd dual-doped cathode material shows the best cycling performance and the least capacity loss. At a 10 C-rate, the electrodes of Ce/Nd dual-doped cathode material exhibit good capacity retention of 72.7, 58.5, and 45.2% after 100, 200, and 300 cycles, respectively, compared to those of pristine samples without doping (24.4, 11.1, and 8.0%).

Fabrication of High Density BZN-PVDF Composite Film by Aerosol Deposition for High Energy Storage Properties (상온분말분사공정을 이용한 고밀도 폴리머-세라믹 혼합 코팅층 제조 및 에너지 저장 특성 향상)

  • Lim, Ji-Ho;Kim, Jin-Woo;Lee, Seung Hee;Park, Chun-kil;Ryu, Jungho;Choi, Doo hyun;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.175-182
    • /
    • 2019
  • This study examines paraelectric $Bi_{1.5}Zn_{1.0}Nb_{1.5}O_7$ (BZN), which has no hysteresis and high dielectric strength, for energy density capacitor applications. To increase the breakdown dielectric strength of the BZN film further, poly(vinylidene fluoride) BZN-PVDF composite film is fabricated by aerosol deposition. The volume ratio of each composition is calculated using dielectric constant of each composition, and we find that it was 12:88 vol% (BZN:PVDF). To modulate the structure and dielectric properties of the ferroelectric polymer PVDF, the composite film is heat-treated at $200^{\circ}C$ for 5 and 30 minutes following quenching. The amount of ${\alpha}-phase$ in the PVDF increases with an increasing annealing time, which in turn decreases the dielectric constant and dielectric loss. The breakdown dielectric strength of the BZN film increases by mixing PVDF. However, the breakdown field decreases with an increasing annealing time. The BZN-PVDF composite film has the energy density of $4.9J/cm^3$, which is larger than that of the pure BZN film of $3.6J/cm^3$.

Effects of Tempering Temperature and Heat-Treatment Path on the Microstructural and Mechanical Properties of ASTM Gr.92 Steel (ASTM Gr.92강의 미세조직 및 기계적 성질에 미치는 템퍼링 온도 및 열처리경로의 영향)

  • Kim, Yeon-Keun;Han, Chang-Hee;Baek, Jong-Hyuk;Kim, Sung-Ho;Lee, Chan-Bock;Hong, Sun-Ig
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.39-48
    • /
    • 2010
  • In order to investigate the effects of tempering temperature and heat-treatment path on the microstructural and mechanical properties of ASTM Gr.92 steels, four samples with different tempering temperatures and heat-treatment paths wer prepared. THeree experimental steels showed tempered martensitic microstructures, but the sample tempered at $810^{\circ}C$ was presumed to retain partially untempered martensitic microstructures due to a lower ${\alpha}$+${\gamma}$ phase regime. $M_{23}C_6$, V(C,N), and Nb(C,N) precipitates were observed in all samples. In addition $Cr_2N$ was observed to be precipitated finely and uniformly by isothermal heat-treatment. The lath width and precipitate size in the isothermal heat-treated samples were much smaller than those of the tempered-only specimens. Because of a fine and uniform precipitate, a reduction of lath width would enhance precipitation hardeing, and it was shown that mechanical propertiesincluding the hardness and tensile properties of the steels were improved by isothermal heat-treatment.

Microstructure of Cu-Ag Filamentary Nanocomposite Wires Annealed at Different Temperatures (어닐링한 Cu-Ag 나노복합재 와이어의 미세조직)

  • Kwak, Ho Yeon;Hong, Sun Ig;Lee, Kap Ho
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.12
    • /
    • pp.995-1000
    • /
    • 2011
  • The microstructure of Cu-24 wt.%Ag filamentary nanocomposite fabricated by a thermo-mechanical process has been investigated by transmission electron microscopy (TEM) observations. This study is focused on the stability of Ag filaments formed by cold drawing; the effects of thermal treatment on the precipitation behavior and distribution of Ag-rich precipitates were also investigated. The Ag filaments elongated along the <111> orientation were observed in Cu-rich ${\alpha}$ phase of the as-drawn specimen and the copper matrix and the silver filament have a cube on cube orientation relationship. Annealing at temperatures lower than $200^{\circ}C$ for the as-drawn specimen caused insignificant change of the fibrous morphology but squiggly interfaces or local breaking of the elongated Ag filaments were easily observed with annealing at $300^{\circ}C$. When samples were annealed at $400^{\circ}C$, discontinuous precipitation was observed in supersaturated Cu solid solution. Ag precipitates with a thickness of 7-20 nm were observed along the <112> direction and the orientation relationship between the copper matrix and the Ag precipitates maintained the same orientation relationship in the as-drawn specimen. The interface between the copper matrix and the Ag precipitates is parallel to {111} and micro-twins were observed in the Ag precipitates.