• Title/Summary/Keyword: Alpha particles

Search Result 386, Processing Time 0.027 seconds

Review of Viscosities and Phases of Biogenic Secondary Organic Aerosols (생물기원 이차유기에어로졸의 점성도와 상 규명에 관한 최근 연구 동향)

  • Song, Mijung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.4
    • /
    • pp.349-359
    • /
    • 2016
  • Researchers have traditionally assumed that aerosol particles containing secondary organic aerosols (SOAs) are to be in liquid state with low viscosity even at low relative humidity. However, recent measurements showed that SOAs can have high viscosity under certain conditions. Herein, new different techniques for measurements of viscosities of SOA particles are introduced. Moreover, laboratory studies for the viscosities and the phases of biogenic SOAs produced by ${\alpha}$-pinene, isoprene, limonene, and ${\beta}$-caryophyllene of atmospheric relevance are reviewed. Future studies for determination of the phases of atmospheric aerosol particles are also suggested.

Synthesis of Copoly(amide-imide)s Based on Silica Nano Particles-polyacrylamide

  • Min, Jun Ho;Park, Chan Young;Min, Seong Kee
    • Elastomers and Composites
    • /
    • v.51 no.2
    • /
    • pp.138-146
    • /
    • 2016
  • It is an inconvenience for silica nano-particles to dry again when using it in that they cohere each other through moisture in the air. Acrylamide groups were introduced to improve such inconvenience and copolymerized with silica nano-particles and then we copolymerized again with polyamic acid in order to increase thermal characteristic. Amide block copolymers were prepared using silica and (3-mercaptopropyl) trimethoxysilane (MPTMS) with a siloxane group, using 2,6-Lutidine as a catalyst. Amide block polymers and copolymers were synthesized via ATRP after brominating pyromellitic dianhydride (PMDA) and polyamic acid of methylene diphenyl diamine (MDA), using ${\alpha}$-bromo isobutyryl bromide. Characteristic peaks of copolymer with amide and imide groups and patterns of amorphous polymers were researched by FT-IR and XRD analyses and the analysis of surface characteristic groups was conducted via XPS. A change in thermal properties was examined through DSC and TGA and solubility for solvents was also researched.

Synthesis and Characterization of Rod-Shaped Ni-Zn Ferrite Particles (막대형 Ni-Zn 페라이트 입자의 합성 및 특성 평가)

  • Chun, Seung-Yeop;Hwang, Jin-Ah;Chun, Myoung-Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.300-306
    • /
    • 2018
  • The rod-shaped $Ni_{0.5}Zn_{0.5}Fe_2O_4$ particles were synthesized via a topotactic reaction, in which goethite (${\alpha}-FeOOH$) particles are the main constituents. The phases, microstructures and magnetic properties of these particles were studied using XRD, FE-SEM and VSM. The precursor solution consisted of $NiSO_4{\cdot}xH_2O$, $ZnSO_4{\cdot}xH_2O$, goethite and D.I. water werereacted at four different temperatures (50, 70, 90, $100^{\circ}C$) to generate four differently precipitated particles respectively. During the co-precipitation reaction, the pH of the solution was maintained at 8.0 using NaOH. The particles co-precipitated and calcined at a temperature of $700^{\circ}C$, exhibited a rod-shape similar to its original goethite, which means that the shape of Ni-Zn ferrite particles can be topotactically controlled by the goethite. The particles synthesized at 70 and $90^{\circ}C$ have a saturation magnetization of 29 and 35 emu/g respectively; representing better values than the ones synthesized at the 50 and $100^{\circ}C$, in which some second phases such as $Fe_2O_3$ were observed.

Microstructure and Polytype of in situ-Toughened Silicon Carbide

  • Young Wook Kim;Mamoru Mitomo;Hideki Hirotsuru
    • The Korean Journal of Ceramics
    • /
    • v.2 no.3
    • /
    • pp.152-156
    • /
    • 1996
  • Fine (~0.09 $\mu$m) $\beta$-SiC Powders with 3.3wt% of large (~0.44$\mu$m) $\alpha$-SiC of $\beta$-SiC particles (seeds) added were hotpressed at 175$0^{\circ}C$ using $Y_2O_3$, $Al_2O_3$ and CaO as sintering aids and then annealed at 185$0^{\circ}C$ for 4 h to enhance grain growth. The resultant microstructure and polytypes were analyzed by high resolution electron microscopy (HREM).Growth of $\beta$-SiC with high density of microtwins and formation of ${\alpha}/{\beta}$ composite grains consisting of $\alpha$-SiC domain sandwiched between $\beta$-SiC domains were found in both specimens. When large $\alpha$-SiC (mostly 6H) seeds were added, the $\beta$-SiC transformend preferentially to the 6H polytype. In contrast, when large $\beta$-SiC (3C) seeds were added, the fine $\beta$-SiC transformed preferentially to the 4H polytype. Such results suggested that the polytype formation in SiC was influenced by crystalline form of seeds added as well as the chemistry of sintering aids. The ${\alpha}/{\beta}$ interface played and important role in the formation of elongated grains as evidenced by presence of ${\alpha}/{\beta}$ composite grains with high aspect ratio.

  • PDF

Characteristics of Alumina Particles Synthesized by Microwave Heating (마이크로파 가열에 의하여 합성된 알루미나 입자의 특성)

  • Kim, Sung-Wan;Lee, Sung-Hwan;Park, Jae-Hyun;Kim, Jun-Ho;Park, Seong-Soo;Park, Hee-Chan
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.1007-1010
    • /
    • 2002
  • Alpha alumina platelet particles were synthesized from the powder mixture of ${\gamma}-Al_2O_3and\;Na_2SO_4$ with the use of microwave heating. The characteristics of the particles such as particle size and particle size distribution were compared with those of particles obtained from the same mixture without the use of microwave. Sample with the use of microwave showed small particle size and narrow particle size distribution compared to that without the use of microwave.

Measurement of fast ion life time using neutron diagnostics and its application to the fast ion instability at ELM suppressed KSTAR plasma by RMP

  • Kwak, Jong-Gu;Woo, M.H.;Rhee, T.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1860-1865
    • /
    • 2019
  • The confinement degradation of the energetic particles during RMP would be a key issue in success of realizing the successful energy production using fusion plasma, because a 3.5 MeV energetic alpha particle should be able to sustain the burning plasma after the ignition. As KSTAR recent results indicate the generation of high-performance plasma(${\beta}_p{\sim}3$), the confinement of the energetic particles is also an important key aspect in neutral beam driven plasma. In general, the measured absolute value of the neutron intensity is generally used for to estimating the confinement time of energetic particles by comparing it with the theoretical value based on transport calculations. However, the availability of, but for its calculation process, many accurate diagnostic data of plasma parameters such as thermal and incident fast ion density, are essential to the calculation process. In this paper, the time evolution of the neutron signal from an He3 counter during the beam blank has permitted to facilitate the estimation of the slowing down time of energetic particles and the method is applied to investigate the fast ion effect on ELM suppressed KSTAR plasma which is heated by high energy deuterium neutral beams.

Characteristics of Al2O3/ZrO2 Ceramics by the Dispersion Process of ZrO2 Particles (ZrO2 입자의 분산방법에 따른 Al2O3/ZrO2 요업체의 특성)

  • Youn, Sang-Hum;Kim, Jae-Jun;Hwang, Kyu-Hong;Lee, Jong-Kook;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.561-566
    • /
    • 2005
  • For the homogeneous dispersion of $ZrO_2$ particles in $Al_2O_3/ZrO_2$ceramics, Zr-precusors were mixed with oxide $Al_2O_3$powders by chemical routes such as partial precipitation or partial polymerization of Zr-nitrate solutions. In case of the mechanical mixing of ultrafine $Al_2O_3$ and $ZrO_2$ oxide powders, relatively homogeneous dispersion was difficult to achieve so that the particle size and distributions of $ZrO_2$ were relatively inhomogeneous after sintering at high temperature. But when the Zr-Y-hydroxide were co-precipitated to ultrafine $Al_2O_3$ oxide powders followed by calcinations, homogeneous dispersion of nano-sized $ZrO_2$ particles in $Al_2O_3/ZrO_2$ composite ceramics were obtained. But because of the coalescence of dispersed $ZrO_2$ particles, dispersed $ZrO_2$ was grown up to more than 0.2${mu}m$ (200 nm) when sintered at the temperature of higher than $1500^{\circ}C$ But when the sintering temperature was kept to lower than $1400^{\circ}C$ by using nano-sized $\alpha-alumina$, the particle size of dispersed $ZrO_2$ could be sustained below 0.1 ${\mu}m$. But the coalescence of dispersed $ZrO_2$ between $Al_2O_3$ particles could not be avoided so that the mechanical properties were not enhanced contrary to the expectations. So Zr-polyester precursors were precipitated and coated to the surface of ultrafine $\alpha-alumina$ powders by the polymerization of Ethylene Glycol with Citric Acid and Zirconium Nitrate. By this dispersion much more uniform dispersion of $ZrO_2$ was achieved at $1450\~1600^{\circ}C$ of sintering temperature ranges. And due to especially discrete dispersion of $ZrO_2$ between $Al_2O_3$ particles, their mechanical strength was more enhanced than mechanical mixing or hydroxide precipitation methods.

A study on anisotropic characteristics of axial strengths in $\alpha$-quartz by using molecular dynamics simulation and uniaxial compression test (분자동력 학 시뮬레이션과 일축압축강도시험을 이용한 $\alpha$-quartz의 결정축에 따른 강도이방성 검토)

  • ;;市川康明;河村雄行
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.70-79
    • /
    • 2000
  • We carried out NPT-ensemble (constant-number of particles, pressure, and temperature) Molecular Dynamics (MD) simulations for measuring strength anisotropy under uniaxial compressive stress rotated to the crystallographic axes in $\alpha$-quartz. Uniaxial compressive strengths of a single quartz crystal were measured in directions of the a- and c-axis. Measured uniaxial strength of a single quartz crystal was higher in the direction parallel to the c-axis than that measured in the direction normal to the c-axis. However the reverse was found in calculated uniaxial strengths by MD simulation. The contradictive result of strengths was observed in both cases but was found to be different in origin. Strength anisotropy of defectless $\alpha$-quartz crystal in MD simulation is basically caused by structural difference of quartz. By contrast, anisotropy of measured strength in the uniaxial compression test is related to oriented micro-defects developed during crystal growth.

  • PDF

Evaluation on the Possibility of Preparation of Nanosized Alumina Powder under W/O Emulsion Method Using Homogenizer (Homogenizer를 사용한 W/O 에멀젼법하에 나노크기 알루미나 분체 제조 가능성 평가)

  • Lee, Yoong;Hahm, Yeong-Min
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.488-494
    • /
    • 2010
  • Under W/O emulsion method using a homogenizer, ${\alpha}$-alumina powder was prepared to evaluate the effects of experimental conditions on its properties, such as particle shape, extent of aggregation, average particle size and distribution. The experimental parameters were the change of type, quantity and composition of emulsifiers as well as the change of O : W volumetric ratio and agitation rate. As results, in the case of the use of single surfactant of SP80, sphere-like particles could be prepared and the average particle size was hardly affected by the agitation speed more than 16000 rpm regardless of SP80 quantity used. When the extent of aggregation among sphere-like particles prepared using $HLB_m$ = 5 of [SP80 & TW80] was compared with that prepared using SP80 at the same vol% surfactant and agitation speed, the former showed more or less low aggregation phenomena and average particle size was slightly reduced. In addition, the fraction of nano-sized particles with low aggregation was increased by the use of 0.1 vol% n-butanol, as a co-surfactant, with $HLB_m$ = 5 of [SP80 & TW80].

Effect of Trace Amount of Ca on Corrosion Resistance of Solutionized Mg-4%Zn Alloy (용체화처리된 Mg-4%Zn 합금의 부식 저항성에 미치는 미량 Ca 첨가의 영향)

  • Jun, Joong-Hwan;Hwang, In-Je
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.4
    • /
    • pp.168-175
    • /
    • 2016
  • Influence of trace amount of Ca addition on the corrosion resistance was comparatively investigated in solutionized Mg-4%Zn and Mg-4%Zn-0.1%Ca alloys. In as-cast state, the alloys were characterized by primary ${\alpha}-(Mg)$ dendrite with MgZn intermetallic compound particles. After solution-treatment, both alloys consisted of single ${\alpha}-(Mg)$ phase by dissolution of the compound particles into the matrix. It was found from the immersion and electrochemical corrosion tests that the Mg-4%Zn alloy had better corrosion resistance than the Mg-4%Zn-0.1%Ca alloy. Morphological and compositional analyses on the surface corrosion products indicate that the incorporation of Ca oxide with low PBR value into the surface corrosion products would be responsible for the decreased corrosion resistance of the Ca-containing alloy.