• Title/Summary/Keyword: Alpha $Bi_2O_3$

Search Result 52, Processing Time 0.027 seconds

Effect of the Structure of MoO3/bismuth molybdate Binary Phase Catalysts on the Selective Oxidation of Propylene (MoO3/bismuth molybdate 혼합 2상 촉매의 구조에 따른 프로필렌 선택산화반응 특성)

  • Cha, T.B.;Choi, M.J.;Park, D.W.;Chung, J.S.
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.53-63
    • /
    • 1992
  • M/BM -series catalysts, $MoO_3$ supported on ${\alpha}-Bi_2Mo_3O_{12}$ were also prepared by impregnation method. BM/M-series catalysts, ${\alpha}-Bi_2Mo_3O_{12}$ supported on $MoO_3$ were also prepared by coprecipitation. Structure and catalytic properties of the two phase catalysts were studied by means of using nitrogen adsorption, X-ray diffraction, and scanning electron microscopy. The reaction test for the selective oxidation of propylene to acrolein over Bi-molybdate catalysts was studied using a fixed-bed reactor system. In M/BM-series catalysts, $MoO_3$ was dispersed on ${\alpha}-Bi_2Mo_3O_{12}$, and the crystal structure of ${\alpha}-Bi_2Mo_3O_{12}$ remains unchanged by the presence of excess $MoO_3$. However the surface morphology and bulk structure of BM/M-series catalysts were altered probably because the precipitated $Bi(OH)_3$ reacted with $MoO_3$ during the calcination to form ${\alpha}-Bi_2Mo_3O_{12}$ phase. The results of propylene oxidation on both series catalysts showed that the reaction took place over the surface of ${\alpha}-Bi_2Mo_3O_{12}$ particle and the role of excess $MoO_3$ was to supply oxygen to ${\alpha}-Bi_2Mo_3O_{12}$. These increasing effects on activity were also observed in the mechanical mixtures of ${\alpha}-Bi_2Mo_3O_{12}$ and $MoO_3$.

  • PDF

Structural Characterization of Bismuth Zinc Oxide Thin Films Grown by Plasma-Assisted Molecular Beam Epitaxy (플라즈마분자선에피탁시법으로 성장한 산화비스무스아연 박막의 구조특성)

  • Lim, Dong-Seok;Shin, Eun-Jung;Lim, Se-Hwan;Han, Seok-Kyu;Lee, Hyo-Sung;Hong, Soon-Ku;Joeng, Myoung-Ho;Lee, Jeong-Yong;Cho, Hyung-Koun;Yao, Takafumi
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.563-567
    • /
    • 2011
  • We report the structural characterization of $Bi_xZn_{1-x}O$ thin films grown on c-plane sapphire substrates by plasma-assisted molecular beam epitaxy. By increasing the Bi flux during the growth process, $Bi_xZn_{1-x}O$ thin films with various Bi contents (x = 0~13.17 atomic %) were prepared. X-ray diffraction (XRD) measurements revealed the formation of Bi-oxide phase in (Bi)ZnO after increasing the Bi content. However, it was impossible to determine whether the formed Bi-oxide phase was the monoclinic structure ${\alpha}-Bi_2O_3$ or the tetragonal structure ${\beta}-Bi_2O_3$ by means of XRD ${\theta}-2{\theta}$ measurements, as the observed diffraction peaks of the $2{\theta}$ value at ~28 were very close to reflection of the (012) plane for the monoclinic structure ${\alpha}-Bi_2O_3$ at 28.064 and the reflection of the (201) plane for the tetragonal structure ${\beta}-Bi_2O_3$ at 27.946. By means of transmission electron microscopy (TEM) using a diffraction pattern analysis and a high-resolution lattice image, it was finally determined as the monoclinic structure ${\alpha}-Bi_2O_3$ phase. To investigate the distribution of the Bi and Bi-oxide phases in BiZnO films, elemental mapping using energy dispersive spectroscopy equipped with TEM was performed. Considering both the XRD and the elemental mapping results, it was concluded that hexagonal-structure wurtzite $Bi_xZn_{1-x}O$ thin films were grown at a low Bi content (x = ~2.37 atomic %) without the formation of ${\alpha}-Bi_2O_3$. However, the increased Bi content (x = 4.63~13.17 atomic %) resulted in the formation of the ${\alpha}-Bi_2O_3$ phase in the wurtzite (Bi)ZnO matrix.

Grain Boundary Trap Levels in ZnO-based Varistor (ZnO계 바리스터의 입계포획준위)

  • Kim, Myung-Chul;Park, Soon-Ja
    • Korean Journal of Materials Research
    • /
    • v.2 no.1
    • /
    • pp.12-18
    • /
    • 1992
  • The trap levels of ZnO-based varistor are obtained by Isothermal Capacitance Transient Spectroscopy method. Here ICTS measuring system consists of YHP 4192A Impedance Analyzer and a personal computer for the data acquisition. Between $-40^{\circ}C$ and $60^{\circ}C$, the grain boundary trap levels of 0.48 and 0.94eV were detected for $ZnO-Bi_2O_3-MnO$ system. The hole omission spectra are observed in the case of the addition of CoO into the $ZnO-Bi_2O_3$ system, while the electron emission spectra are detected in the case of the addition of MnO. The nonlinear resistance coefficient $\alpha$ increases with the decrease of the dormer concentration. Finally, the trap level density of $ZnO-Bi_2O_3-MnO$ system is found to decrease with the amount of CoO, while $\alpha$ is found to increase with the amount of CoO.

  • PDF

Mössbauer Studied of Multiferroic Bi2/3La1/3FeO3 Nanoparticles (Multiferroic Bi2/3La1/3FeO3 나노입자의 Mössbauer 연구)

  • Lee, Seung-Wha
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.28-33
    • /
    • 2006
  • La substituted perovskite $BiFeO_3$ have been prepared by a sol-gel method. Magnetic and structural properties of the powders were characterized with Mossbauer spectroscopy, XRD, SEM, and TG-DTA. The crystal structure is found to be a rhombohedrally distorted perovskite structure with the lattice constant $\alpha=3.985{\AA}\;and\;\alpha=89.5^{\circ}.\;Bi_{2/3}La_{1/3}FeO_3$ powders that were annealed at and above $600^{\circ}C$ have a single-phase perovskite structure. However, powders annealed at $900^{\circ}C$ have a typical perovskite structure with small amount of $Bi_2O_3$ phase. The Neel temperature of $Bi_{2/3}La_{1/3}FeO_3$ is found to be $680\pm3K$. The isomer shift value at room temperature is found to be 0.27 mm/s relative to the Fe metal, which is consistent with high-spin $Fe^{3+}$ charge states. Debye temperature far$Bi_{2/3}La_{1/3}FeO_3$ is found to be $305\pm5K$. The average hyperfine field $H_{hf}(T)$ of the $Bi_{2/3}La_{1/3}FeO_3$, shows a temperature dependence of $[H_{hf}(T)-H_{hf}(0)]/H_{hf}(0)=-0.42(T/T_N)^{3/2}-0.13(T/T_N)^{5/2}$ for $T/T_N<0.7$ indicative of spin-wave excitation.

Sintering and Electrical Properties According to Sb/Bi Ratio(I) : ZnO-Bi2O3-Sb2O3-Mn3O4-Cr2O3 Varistor (Sb/Bi비에 따른 5원계 바리스터의 소결거동 및 전기적 특성(I) : ZnO-Bi2O3-Sb2O3-Mn3O4-Cr2O3)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.675-681
    • /
    • 2012
  • We aimed to examine the co-doping effects of 1/6 mol% $Mn_3O_4$ and 1/4 mol% $Cr_2O_3$ (Mn:Cr = 1:1) on the reaction, microstructure, and electrical properties, such as the bulk defects and grain boundary properties, of ZnO-$Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi = 0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Mn,Cr-doped ZBS, ZBS(MnCr) varistors were controlled using the Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$), ${\alpha}$-spinel ($Zn_7Sb_2O_{12}$), and ${\delta}-Bi_2O_3$ (also ${\beta}-Bi_2O_3$ at Sb/Bi ${\leq}$ 1.0) were detected for all of the systems. Mn and Cr are involved in the development of each phase. Pyrochlore was decomposed and promoted densification at lower temperature on heating in Sb/Bi = 1.0 system by Mn rather than Cr doping. A more homogeneous microstructure was obtained in all systems affected by ${\alpha}$-spinel. In ZBS(MnCr), the varistor characteristics were improved dramatically (non-linear coefficient, ${\alpha}$ = 40~78), and seemed to form ${V_o}^{\cdot}$(0.33 eV) as a dominant defect. From impedance and modulus spectroscopy, the grain boundaries can be seen to have divided into two types, i.e. one is tentatively assigned to ZnO/$Bi_2O_3$ (Mn,Cr)/ZnO (0.64~1.1 eV) and the other is assigned to the ZnO/ZnO (1.0~1.3 eV) homojunction.

Effect of Sb/Bi Ratio on Sintering and Grain Boundary Properties of ZnO-Bi2O3-Sb2O3-NiO-Cr2O3 Varistor (Sb/Bi비가 ZnO-Bi2O3-Sb2O3-NiO-Cr2O3 바리스터의 소결과 입계 특성에 미치는 영향)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.689-695
    • /
    • 2012
  • We have examined the co-doping effects of 1/2 mol% NiO and 1/4 mol% $Cr_2O_3$ (Ni:Cr = 1:1) on the reaction, microstructure, and electrical properties, such as the bulk defects and the grain boundary properties, of ZnO-$Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi = 0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Ni,Cr-doped ZBS, ZBS(NiCr) varistors were controlled using the Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$), ${\alpha}$-spinel ($Zn_7Sb_2O_{12}$), and ${\delta}-Bi_2O_3$ were detected for all of compositions. For the sample with Sb/Bi = 1.0, the Pyrochlore was decomposed and promoted densification at lower temperature by Ni rather than by Cr. A homogeneous microstructure was obtained for all of the samples affected by ${\alpha}$-spinel. The varistor characteristics were not dramatically improved (non-linear coefficient, ${\alpha}$ = 5~24), and seemed to form ${Zn_i}^{{\cdot}{\cdot}}$(0.17 eV) and ${V_o}^{\cdot}$(0.33 eV) as dominant defects. From impedance and modulus spectroscopy, the grain boundaries were found to have been divided into two types, i.e., one is tentatively assigned to ZnO/$Bi_2O_3$ (Ni,Cr)/ZnO (0.98 eV) and the other is assigned to a ZnO/ZnO (~1.5 eV) homojunction.

Preparation and Magnetic Properties of Amorphous Spinel Ferrite (비정질 Spinel Ferrite의 제조와 그 자기적 특성)

  • 김태옥;김창곤
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.1
    • /
    • pp.29-36
    • /
    • 1992
  • The fundamental research about the amorphous ferrite, which is expected as the important material for electronic and information imdustry in future, was carried out in this work. Because the ferromagnetic amorphous ferrites reported recently are very inferior in magnetic properties than the crystalline ferrites, the development of the more ferromagnetic amorphous ferrites is required. In order to obtain the fundamental data for the preparation of amorphous ferrites, the hand-made twin-roller quenching apparatus was used for rapid quenching. Investigation on amorphous ferrite in the system $CaO-Bi_{2}O_{3}-Fe_{2}O_{3}$ has been carried out in the composition of 10-50 mole% CaO, 10-50 mole% $Bi_{2}O_{3}$, 40-70 mole% $Fe_{2}O_{3}$. Large magnetization values were obtained near the composition of the mixture of $BiFeO_{3}$ and $CaFe_{4}O_{7}$. Especially, an amorphous ${(CaO)}_{20}{(Bi_{2}O_{3})_{15}{(Fe_{2}O_{3})}_{65}$ specimen has a magmetization value of about 21.84 emu/g at 0K(10 kOe). Fe $M\"{o}ssbauer$ absorption spectrum indicates that this specimen is compsed of two amorphous phases, antiferromagnetic phase($\alpha$-phase) and ferromagnetic phase($\beta$-phase). Crystallization of this amorphous ferrite was happened in steps-$550^{\circ}C$ and $775^{\circ}C$, then observed crystal phases were perovskite phase of $BiFeO_{3}$ and $Fe_{2}O_{3}$ phase.

  • PDF

Sintering and Electrical Properties of Ni-doped ZnO-Bi2O3-Sb2O3 (Ni를 첨가한 ZnO-Bi2O3-Sb2O3계의 소결과 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.941-948
    • /
    • 2009
  • The present study aims at the examination of the effects of 1 mol% NiO addition on the reaction, microstructure development, resultant electrical properties, and especially the bulk trap and interface state levels of $ZnO-Bi_2O_3-Sb_2O_3$ (Sb/Bi=0.5, 1.0, and 2.0) systems (ZBS). The samples were prepared by conventional ceramic process, and characterized by density, XRD, SEM, I-V, impedance and modulus spectroscopy (IS & MS) measurement. The sintering and electrical properties of Ni-doped ZBS (ZBSN) systems were controlled by Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$) was decomposed more than $100^{\circ}C$ lowered in ZBS (Sb/Bi=1.0) by Ni doping. The reproduction of pyrochlore was suppressed by the addition of Ni in ZBS. Between two polymorphs of $Zn_7Sb_2O_{12}$ spinel ($\alpha$ and $\beta$), microstructure of ZBSN (Sb/Bi=0.5) composed of a-spinel was more homogeneous than $Sb/Bi{\geq}1.0$ composed of $\beta$-spinel phase. In ZBSN, the varistor characteristics were not improved drastically (non-linear coefficient $\alpha\;=\;6{\sim}11$) and independent on microstructure according to Sb/Bi ratio. Doping of Ni to ZBS seemed to form ${V_0}^{\cdot}$ (0.33 eV) as dominant bulk defect. From IS & MS, especially the grain boundaries of Sb/Bi=0.5 systems were divided into two types, i.e. sensitive to oxygen and thus electrically active one and electrically inactive intergranular one with temperature.

Sintering and Electrical Properties According to Sb/Bi Ratio(II) : ZnO-Bi2O3-Sb2O3-Co3O4-Cr2O3 Varistor (Sb/Bi비에 따른 5원계 바리스터의 소결거동 및 전기적 특성(II) : ZnO-Bi2O3-Sb2O3-Co3O4-Cr2O3)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.682-688
    • /
    • 2012
  • In this study we aimed to examine the co-doping effects of 1/6 mol% $Co_3O_4$ and 1/4 mol% $Cr_2O_3$ (Co:Cr = 1:1) on the reaction, microstructure, and electrical properties, such as the bulk defects and the grain boundary properties, of ZnO-$Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi = 0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Co,Cr-doped ZBS, ZBS(CoCr) varistors were controlled using the Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$), ${\alpha}$-spinel ($Zn_7Sb_2O_{12}$), and ${\delta}-Bi_2O_3$ were formed in all systems. Pyrochlore was decomposed and promoted densification at lower temperature on heating in Sb/Bi = 1.0 by Cr rather than Co. A more homogeneous microstructure was obtained in all systems affected by ${\alpha}$-spinel. In ZBS(CoCr), the varistor characteristics were improved (non-linear coefficient, ${\alpha}$ = 20~63), and seemed to form ${Zn_i}^{{\cdot}{\cdot}}$(0.20 eV) and ${V_o}^{\cdot}$(0.33 eV) as dominant defects. From impedance and modulus spectroscopy, the grain boundaries were found to be composed of an electrically single barrier (0.94~1.1 eV) that is, however, somewhat sensitive to ambient oxygen with temperature. The phase development, densification, and microstructure were controlled by Cr rather than by Co but the electrical and grain boundary properties were controlled by Co rather than by Cr.

Fabrication and Post-Annealing Effects of Ferroelectric $Sr_xBi_yTa_2O_{9+\alpha}$(SBT) Thin Films by MOD Process (MOD법에 의한 강유전성 $Sr_xBi_yTa_2O_{9+\alpha}$(SBT) 박막의 제조 및 후열처리 효과에 관한 연구)

  • 정병직;신동석;윤희성;김병호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.3
    • /
    • pp.229-236
    • /
    • 1998
  • Ferroelectric $Sr_xBi_yTa_2O_{9+\alpha}$/(0.7$\leqSr\leq1.0,\; 2.0\leqBi\leq2.6)$ solutions were prepared by MOD (Metalorganic Deposition) process. These solutions were made into thin films with thickness ranging from 1500~2000${\AA}$ by spin coating. The phase transformation of the SBT thin films by variation of annealing temperature and annealing time were observed using high temperature XRD and SEM. The crystallization and grain growth of SBT thin film were accomplished at $800^{\circ}C$ for 30 minutes after deposition of Pt top electrode by sputtering to prevent electrical breakdown. Ferroelectric properties of the SBT thin films were measured in the range of $\pm$3V\; and\; \pm5V$. The specimen with composition ratio of Sr/Bi/Ta (0.8/2.4/2.0) has the excellent ferroelectric properties ; $2P_r = 10.5,\; 13.2\muC/cm^2 \;at\; \pm3V\; and\; \pm5V$ respectively. Observing the post annealed Pt/SBT/Pt interface by SEM, it was found that Pt electrode sputtered on to the SBT thin film penetrated into the hollow on the SBT thin film, thus decreasing the effective insulation thickness. The effective insulation thickness recovered by post annealing, and this was confirmed by leakage current density measurement.

  • PDF