• Title/Summary/Keyword: Alloy composition

Search Result 747, Processing Time 0.026 seconds

Fabrication of Ferromagnetic Mn-AI Alloy N anoparticles using a Plasma Arc-discharge Process (플라즈마 아크 방전법에 의한 강자성 Mn-Al 합금나노입자의 합성)

  • Lee, Jung-Goo;Li, Pu;Dong, Xing Long;Choi, Chul-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.357-362
    • /
    • 2010
  • Ferromagnetic Mn-Al nanoparticles were prepared using a plasma arc discharge method. The influence of the process parameters on the vaporization rate, composition, particle size, and magnetic properties of the as-produced nanoparticles was investigated. The Mn content was found to be higher in the nanoparticles than in the corresponding mother materials, although the difference diminished with the reaction time. As the $H_2$ content in the reaction gas increased, both the vaporization rate and the particle size increased. With 30 at.% Mn, the average particle diameter was 35.2 nm under a pure Ar gas condition, whereas it was 95.4 nm at a Ar:$H_2$ ratio of 60:40. With the addition of a small amount of carbon, ${\varepsilon}$-phase nanoparticles were successfully synthesized. After a heat treatment in a vacuum for 30 min at $500^{\circ}C$, the nonmagnetic ${\varepsilon}$-phase was transformed into the ferromagnetic ${\tau}$-phase, and a very high coercivity of nearly 5.6 kOe was achieved.

Thermal Shock Reliability of Low Ag Composition Sn-0.3Ag-0.7Cu and Near Eutectic Sn-3.0Ag-0.5Cu Pb-free Solder Joints (Low Ag 조성의 Sn-0.3Ag-0.7Cu 및 Sn-3.0Ag-0.5Cu 무연솔더 접합부의 열충격 신뢰성)

  • Hong, Won Sik;Oh, Chul Min
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.842-851
    • /
    • 2009
  • The long-term reliability of Sn-0.3wt%Ag-0.7wt%Cu solder joints was evaluated and compared with Sn-3.0wt%Ag-0.5wt%Cu under thermal shock conditions. Test vehicles were prepared to use Sn-0.3Ag-0.7Cu and Sn-3.0Ag-0.5Cu solder alloys. To compare the shear strength of the solder joints, 0603, 1005, 1608, 2012, 3216 and 4232 multi-layer ceramic chip capacitors were used. A reflow soldering process was utilized in the preparation of the test vehicles involving a FR-4 material-based printed circuit board (PCB). To compare the shear strength degradation following the thermal shock cycles, a thermal shock test was conducted up to 2,000 cycles at temperatures ranging from $-40^{\circ}C$ to $85^{\circ}C$, with a dwell time of 30 min at each temperature. The shear strength of the solder joints of the chip capacitors was measured at every 500 cycles in each case. The intermetallic compounds (IMCs) of the solder joint interfaces werealso analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results showed that the reliability of Sn-0.3Ag-0.7Cu solder joints was very close to that of Sn-3.0Ag-0.5Cu. Consequently, it was confirmed that Sn-0.3Ag-0.7Cu solder alloy with a low silver content can be replaced with Sn-3.0Ag-0.5Cu.

Superfine-Nanocomposite Mo - Cu Powders Obtained by Using Planetary Ball Milling

  • Lee, Han-Chan;Moon, Kyoung-Il;Shin, Paik-Kyun;Lee, Boong-Joo
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1340-1345
    • /
    • 2018
  • Mo-10 at.% Cu nanocomposite powders were fabricated by using planetary ball-milling (PBM), a mechanical alloying technique for preparing nanocomposite alloy powders of metals with mutual insolubility, and the variations in the physical and the chemical characteristics with the process conditions were investigated. We observed that Mo-10 at.% Cu was an appropriate composition to ensure a good alloying grade and minimal welding between particles. The influences of the temperature and the milling conditions on the mechanical alloying process and the phase change of Mo-10 at.% Cu composite powders were investigated, and the particle and the grain sizes of the powders after mechanical alloying were confirmed. The Mo-10 at.% Cu powders showed homogeneous elemental distributions and no phase changes up to $1200^{\circ}C$; their compositions were retained after the mechanical alloying process. The finest grain size obtained was about 5 nm for powders processed using optimum PBM processing conditions: ball-to-powder weight ratio of 5 : 1, ambient air atmosphere, a milling time of 20 h, a rotation speed of 200 rpm, and a stearic acid content of 4 wt.% produced superfine-grained Mo-10 at.% Cu nanocomposite powders with an average grain size of 5 nm (which is smaller than that of other similar materials reported in the literature). The analytical results confirmed that the PBM technique presented here is a promising method for preparing superfine-grained Mo-10 at.% Cu powders with improved properties.

A Study on Manufacturing Technique and Alloy Characteristics of Bronze Mirrors from Jeollanam-do Region in the Three Kingdoms Period (전남지역 출토 삼국시대 청동거울의 합금 특성과 제작 방법 고찰)

  • Lee, Eun Ji
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.767-777
    • /
    • 2021
  • This study analyzed the microstructures and chemical composition of three samples of bronze mirrors excavated in the Jeollanam-do region, particularly Goheung and Damyang. Under x-ray irradiation, the analysis results confirmed the broken parts and pores caused by cracks, casting, and corrosion. Major and minor elemental analysis were performed on three mirrors by Scanning electron microscopy (SEM) with Energy dispersive x-ray spectrometry (EDS) and Inductively coupled plasma mass spe ctrome try (ICP-MS). The re sult shows that the bronze mirrors containe d Cu-Sn-Pb alloys. Alpha phase and eutectic phase were observed in the microstructure, confirming that the casting was performed without additional heat treatment. Notably, Three bronze mirrors were made early Three Kingdoms period in Korea.

Analysis of Bonding Characteristics of Ag-System Brazing Filler Metal (은계 필러메탈 브레이징 접합부의 특성 분석)

  • Soon-Gil Lee;Hwa-In Lee;Jin-Oh Son;Gwang-Il Ha;Bon-Heun Koo
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.214-221
    • /
    • 2023
  • As a filler metal for lowering the melting point of Ag, many alloy metal candidates have emerged, such as cadmium, with zinc, manganese, nickel, and titanium as active metals. However, since cadmium is known to be harmful to the human body, Cd-free filler metals are now mainly used. Still, no study has been conducted comparing the characteristics of joints prepared with and without cadmium. In addition, studies have yet to be conducted comparing the typical characteristics of brazing filler metals with special structures, and the joint characteristics of brazing filler metals with available frames. In this study, the characteristics of junctions of silver-based intercalation metals were compared based on the type of filler metal additives, using a special structure, a filler metal sandwich structure, to protect the internal base metal. The general filler metal was compared using the structure, and the thickness of the filler metal according to the thickness was reached. A comparison of the characteristics of the junction was conducted to identify the characteristics of an intersection of silver-based brazing filler metal and the effect on joint strength. Each filler metal's collective tensile strength was measured, and the relationship between joint characteristics and tensile joint strength was explored. The junction was estimated through micro strength measurement, contact angle measurement with the base metal when the filler metal was melted, XRD image observation, composition analysis for each phase through SEM-EDS, and microstructure phase acquisition.

Characteristics of Rhenium-Iridium coating thin film on tungsten carbide by multi-target sputter

  • Cheon, Min-Woo;Kim, Tae-Gon;Park, Yong-Pil
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.328-331
    • /
    • 2012
  • With the recent development of super-precision optical instruments, camera modules for devices, such as portable terminals and digital camera lenses, are increasingly being used. Since an optical lens is usually produced by high-temperature compression molding methods using tungsten carbide (WC) alloy molding cores, it is necessary to develop and study technology for super-precision processing of molding cores and coatings for the core surface. In this study, Rhenium-Iridium (Re-Ir) thin films were deposited onto a WC molding core using a sputtering system. The Re-Ir thin films were prepared by a multi-target sputtering technique, using iridium, rhenium, and chromium as the sources. Argon and nitrogen were introduced through an inlet into the chamber to be the plasma and reactive gases. The Re-Ir thin films were prepared with targets having a composition ratio of 30 : 70, and the Re-Ir thin films were formed with a 240 nm thickness. Re-Ir thin films on WC molding core were analyzed by scanning electron microscope (SEM), atomic force microscope (AFM), and Ra (the arithmetical average surface roughness). Also, adhesion strength and coefficient friction of Re-Ir thin films were examined. The Re-Ir coating technique has received intensive attention in the coating processes field because of promising features, such as hardness, high elasticity, abrasion resistance and mechanical stability that result from the process. Re-Ir coating technique has also been applied widely in industrial and biomedical applications. In this study, WC molding core was manufactured, using high-performance precision machining and the effects of the Re-Ir coating on the surface roughness.

Characterization of the Manufacturing Process and Mechanical Properties of CoCrFeMnNi High-Entropy Alloys via Metal Injection Molding and Hot Isostatic Pressing

  • Eun Seong Kim;Jae Man Park;Do Won Lee;Hyojeong Ha;Jungho Choe;Jaemin Wang;Seong Jin Park;Byeong-Joo Lee;Hyoung Seop Kim
    • Journal of Powder Materials
    • /
    • v.31 no.3
    • /
    • pp.243-254
    • /
    • 2024
  • High-entropy alloys (HEAs) have been reported to have better properties than conventional materials; however, they are more expensive due to the high cost of their main components. Therefore, research is needed to reduce manufacturing costs. In this study, CoCrFeMnNi HEAs were prepared using metal injection molding (MIM), which is a powder metallurgy process that involves less material waste than machining process. Although the MIM-processed samples were in the face-centered cubic (FCC) phase, porosity remained after sintering at 1200℃, 1250℃, and 1275℃. In this study, the hot isostatic pressing (HIP) process, which considers both temperature (1150℃) and pressure (150 MPa), was adopted to improve the quality of the MIM samples. Although the hardness of the HIP-treated samples decreased slightly and the Mn composition was significantly reduced, the process effectively eliminated many pores that remained after the 1275℃ MIM process. The HIP process can improve the quality of the alloy.

A Review on Treasure No.1167, Unified Silla Buddhist Bell from Uncheon-dong, Cheongju, about Its Form and Conservational Scientific Features (보물 제1167호 청주 운천동 출토 통일신라 범종의 형태와 보존과학적 특성 고찰)

  • Kim, Hyun-jeong;Kim, Su-gi
    • Korean Journal of Heritage: History & Science
    • /
    • v.40
    • /
    • pp.357-386
    • /
    • 2007
  • At present, thirteen Buddhist bells of Unified Silla are known to the world: Six in Korea, five in Japan and two other bells, and three out of them are impossible to make out its original form. Therefore, we divided the form of Unified Silla Buddhist bells based on the ten other bells, and we tried out to prove the manufacturing technology by the comparison of the research material of Uncheon-dong bell and existing research materials of other bells, in other to find their linkage based on the alloy elemental composition. We divided Unified Silla Buddhist bell into two types: Type I has symmetric apsaras and regular patterns on its face and it was made in early Silla period; type II has asymmetric apsaras and irregular pattern arrangement and made in late Silla period. In particular, Uncheon-dong Buddhist bells is very similar to Komyoji[光明寺] temple bell from ninth century in Japan. It is peculiar that the apsaras on Uncheon-dong bell play vertical music instruments that are never seen in Unified Silla Buddhist bell. Most of Unified Silla Buddhist bell are compounded with Cu-Sn or Cu-Sn-Pb system. From eighth and ninth century, bells were cast with even composition of copper, tin and lead, and the bronze alloy ratio was similar to the record in Gogonggi[考工記], Jurye[周禮], a book from ancient China. Particularly, Uncheon-dong bell is in a rare case of Cu-Sn-Pb-As system. As had been rarely used in Unified Silla Buddhist bells, so we presented the relative research materials. As has the same nature as Pb. Because As easily volatilize at high temperature, it is hard to use. But it has its merit of solidity and durability. Pb enhances fluidity and thereby expresses the patterns more distinct; As makes the bell stronger. The result of lead isotope ratio could not exactly reveal a concrete producing center. However, over the analysis of our samples, hereby we suggest Uncheon-dong bell was made of materials from just one ore deposit.

Manufacturing Techniques of Bronze Medium Mortars(Jungwangu, 中碗口) in Joseon Dynasty (조선시대 중완구의 제작 기술)

  • Huh, Ilkwon;Kim, Haesol
    • Conservation Science in Museum
    • /
    • v.26
    • /
    • pp.161-182
    • /
    • 2021
  • A jungwangu, a type of medium-sized mortar, is a firearm with a barrel and a bowl-shaped projectileloading component. A bigyeokjincheonroe (bombshell) or a danseok (stone ball) could be used as a projectile. According to the Hwaposik eonhae (Korean Translation of the Method of Production and Use of Artillery, 1635) by Yi Seo, mortars were classified into four types according to its size: large, medium, small, or extra-small. A total of three mortars from the Joseon period have survived, including one large mortar (Treasure No. 857) and two medium versions (Treasure Nos. 858 and 859). In this study, the production method for medium mortars was investigated based on scientific analysis of the two extant medium mortars, respectively housed in the Jinju National Museum (Treasure No. 858) and the Korea Naval Academy Museum (Treasure No. 859). Since only two medium mortars remain in Korea, detailed specifications were compared between them based on precise 3D scanning information of the items, and the measurements were compared with the figures in relevant records from the period. According to the investigation, the two mortars showed only a minute difference in overall size but their weight differed by 5,507 grams. In particular, the location of the wick hole and the length of the handle were distinct. The extant medium mortars are highly similar to the specifications listed in the Hwaposik eonhae. The composition of the medium mortars was analyzed and compared with other bronze gunpowder weapons. The surface composition analysis showed that the medium mortars were made of a ternary alloy of Cu-Sn-Pb with average respective proportions of (wt%) 85.24, 10.16, and 2.98. The material composition of the medium mortars was very similar to the average composition of the small gun from the Joseon period analyzed in previous research. It also showed a similarity with that of bronze gun-metal from medieval Europe. The casting technique was investigated based on a casting defect on the surface and the CT image. Judging by the mold line on the side, it appears that they were made in a piece-mold wherein the mold was halved and using a vertical design with molten metal poured through the end of the chamber and the muzzle was at the bottom. Chaplets, an auxiliary device that fixed the mold and the core to the barrel wall, were identified, which may have been applied to maintain the uniformity of the barrel wall. While the two medium mortars (Treasure Nos. 858 and 859) are highly similar to each other in appearance, considering the difference in the arrangement of the chaplets between the two items it is likely that a different mold design was used for each item.

Crystal structures and magnetic properties of Mn-Al-M (M=Cu, Fe) alloys (Mn-Al-M(M=Cu, Fe) 합금계의 결정구조 및 자기적 성질)

  • Choe, Won-Gyu;Go, Gwan-Yeong;Yun, Seok-Gil
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.22-35
    • /
    • 1995
  • In this study, crystal structures and magnetic properties of as-ast, annealed and rapidly solidified Mn-A1-M( M=Cu, Fe) alloys have been investigated. In $Mn_{0.56}Al_{0.44}$ alloys, the largest fraction of $\tau$ phase and values of magnetic properties was obtained in Mnl, i6Alo or alloy. And this alloy was used as the basic composition. In $Mn_{0.56-X}M_{X}Al_{0.44}$ alloys, when annealed, $\tau$- and $\beta$-Mn phase appeared at x< 0.08, $\tau$- and $\kappa$ phase at 0.10 $\leq x \leq$ 0.12 and $\kappa$- phase only at 0.15 $\leq x \leq$0.20 . When rapidly solidified, specimens showed similar phases as when annealed except that $\varepsilon$ phase appeared at x=0.04. In Mnu FexAlo 44 alloys, asyast specimens showed $\tau$-, $\beta$-Mn and $\gamma_2$- phase at x<0.08 and K and $\beta$-Mn phase at x>0.10. When rapidly solidified, Mn-Fe-Al specimens showed $\varepsilon$-, $\gamma_2$- and small amount of $\tau$- and $\kappa$ phase at x<0.08 and $\kappa$- phase only at 0.$\leq x \leq$0.20. All the alloys investigated were ferromagnetic. The Curie temperature of annealed specimens and rapidly solidified of Mno 5sAlu 44 alloy were -650K and -644K. Spontaneous magnetization( UII of annealed and rapidly solidified specimens were 40-45 (emu/g) and 50-52(emu/g), respectively. Remanent (M,) to saturation magnetization( Ms) ratio was -0.7. M, of rapidly solidified specimen was about 48(emu/g). Magnetic properties of $Mn_{0.56}Al_{0.44}$ alloys were found to be determined by the relative fraction of ferromagnetic r- and K- phase. When M= Cu and x=0.15, maximum as($\sigma_{0.0}$) was obtained by about 64.3 emu/g), and when M=Fe and x=0.15, 66.4( emu/g). The Curie temperature decreased as x increased.

  • PDF