• Title/Summary/Keyword: Alloy composition

Search Result 743, Processing Time 0.022 seconds

Prediction of Microstructure and Hardness of the Ductile Cast Iron Heat-treated at the Intercritical Temperatures (임계간 온도에서 열처리한 구상흑연주철의 미세조직 및 경도 예측)

  • Nam-Hyuk Seo;Jun-Hyub Jeon;Soo-Yeong Song;Jong-Soo Kim;Min-Su Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.279-285
    • /
    • 2023
  • In order to predict the mechanical properties of ductile cast iron heat treated in an intercritical temperature range, samples machined from cast iron with a tensile strength of 450 MPa were heat-treated at various intercritical temperatures and air-cooled, after which a microstructural analysis and Brinell hardness test were conducted. As the heat treatment temperature was increased in the intercritical temperature range, the ferrite fraction in the ductile cast iron decreased and the pearlite fraction increased, whereas the nodularity and nodule count did not change considerably from the corresponding values in the as-cast condition. The Brinell hardness values of the heat-treated ductile cast iron increased gradually as the heat treatment temperature was increased. Based on the measured alloy composition, the fraction of each stable phase and the hardness model from the literature, the hardness of the ductile cast iron heat treated in the intercritical temperature range was calculated, showing values very similar to the measured hardness data. In order to check whether it is possible to predict the hardness of heat-treated ductile cast iron by using the phase fraction obtained from thermodynamic calculations, the volumes of graphite, ferrite, and austenite in the alloy were calculated for each temperature condition. Those volume fractions were then converted into areas of each phase for hardness prediction of the heat-treated ductile cast iron. The hardness values of the cast iron samples based on thermodynamic calculations and on the hardness prediction model were similar within an error range up to 27 compared to the measured hardness data.

Microstructure of Sn-Ag-Cu Pb-free solder (Sn-Ag-Cu 무연합금의 미세구조 분석)

  • Lee, Jung-Il;Lee, Ho Jun;Yoon, Yo Han;Lee, Ju Yeon;Cho, Hyun Su;Cho, Hyun;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.2
    • /
    • pp.94-98
    • /
    • 2017
  • In the past few years, Sn-3.0Ag-0.5Cu (weight%) solder composition has been a representative material to electronic industries as a replacement of Pb-base solder alloy. Therefore, extensive studies on process and/or reliability related with the composition have been reported. However, recent rapid rise in Ag price has demanded solder compositions of low Ag content. In this study, Sn-3.0Ag-0.5Cu solder bar sample was fabricated by melting of Sn, Ag and Cu metal powders. Crystal structure and element concentration were analyzed by XRD, optical microscope, FE-SEM and EDS. The Sn-3.0Ag-0.5Cu solder sample was composed of ${\beta}$-Sn, ${\varepsilon}-Ag_3Sn$ and ${\eta}-Cu_6Sn_5$ phases.

A study on the Properties of $In_{l-x}Ga_{x}As$ Grown by the TGS Methods (TGS법으로 성장한 $In_{l-x}Ga_{x}As$의 특성에 관한 연구)

  • Lee, W.S.;Moon, D.C.;Kim, S.T.;Suh, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.372-375
    • /
    • 1988
  • The III-V ternary alloy semiconductor $In_{l-x}Ga_{x}As$ were grown by the temperature Gradient of $0.60{\leq}x{\leq}0.98$. The electrical properties were investigated by the Hall effect measurement with the Van der Pauw method in the temperature range of $90{\sim}300K$. $In_{l-x}Ga_{x}As$ were revealed n-type and the carrier concentration at 300K were in the range of $9.69{\times}10^{16}cm^{-3}{\sim}7.49{\times}10^{17}cm^{-3}$. The resistivity was increased and the carrier mobility was decreased with increasing the composition ratio. The optical energy gap determined by optical transmission were $20{\sim}30meV$ lower than theoretical valves on the basis of absorption in the conduction band tail and it was decreased with increasing the temperature by the Varshni rule. In the photoluminescence of undoped $In_{l-x}Ga_{x}As$ at 20K, the main emission was revealed by the radiative recombination of shallow donor(Si) to acceptor(Zn) and the peak energy was increased with increasing the composition, X. The diffusion depth of Zn increases proportionally with the square root of diffusion time, and the activation energy for the Zn diffusion into $In_{0.10}Ga_{0.90}As$ was 2.174eV and temperatures dependence of diffusion coefficient was D = 87.29 exp(-2.174/$K_{B}T$). The Zn diffusion p-n $In_{x}Ga_{x}As$ diode revealed the good rectfying characteristics and the diode factor $\beta{\approx}2$. The electroluminescence spectrum for the Zn-diffusion p-n $In_{0.10}Ga_{0.90}As$ diode was due to radiative recombation between the selectron trap level(${\sim}140meV$) and Zn acceptor level(${\sim}30meV$). The peak energy and FWHM of electroluminescence spectrum at 77K were 1.262eV and 81.0meV, respectively.

  • PDF

A Study on the Manufacturing Technique by Scientific Analysis and Reproduction Experiment of Ancient Silver Objects Excavated from Neungnae-ri, Ganghwa Island (강화도 능내리출토 은제유물의 과학적 분석 및 재현실험을 통한 제작기법 연구)

  • Ryu, Dong-Wan;Kim, Soo-Ki
    • Journal of Conservation Science
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • For the silver artifacts in the Koryo Dynasty excavated from Neungnae-ri Ganghwa island, the metallographic section analysis and hardness and chemical analysis were conducted. After making samples in the similar ratio of the composition concentration, the changes of the microstructure were checked according to the working method and temperature. The results show that those silver artifacts are Au-Cu alloys with 2 to 6 % of Cu. From the results it is judged that Cu was artificially alloyed with them to keep the proper hardness and identified that they were gilded by the amalgamation process seeing that mercury was included at the guilt layer. Also the porous texture on the surface of them could be formed at over $400^{\circ}C$, therefore, it is assumed the hot working or heat treatment at over $400^{\circ}C$ were performed. In silver artifacts made by the relief and repousse, they have the similar composition analysis to other 7 artifacts but the hardness is lower than pure silver. Consequently from differences in the hardness, it can be inferred that the low hardness of silver artifacts is concerned with manufacturing techniques.

Effects of Al and Mg on the Microstructure and Hardness of the Coating Layer of Hot-dip Galvanized Steel Sheet (알루미늄과 마그네슘 첨가가 용융아연 도금강판 도금층의 미세조직과 경도에 미치는 영향)

  • Yoonje Sung;Donggyu Kim;Jungi Seo;Kyunghyun Han;Beomki Hong;Kangmin Kim;Seounguk Heo;Seonghyun Park;Jae-Taek Im;Seung Bae Son;Seok-Jae Lee;Jae-Gil Jung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.4
    • /
    • pp.198-205
    • /
    • 2023
  • We investigated the effects of Al and Mg on the microstructure and hardness of the coating layer of galvanized steel sheets, by thermodynamic calculations, X-ray diffraction, scanning electron microscopy, and Vickers hardness tests of Zn-0.2Al, Zn-6Al-2Mg, and Zn-10Al-5Mg coating layers. Regardless of the alloy composition of the galvanizing bath, a Fe-Al layer was observed between the coating layer and steel sheet. The Zn-0.2Al coating layer consists of major h.c.p. Zn phase and minor f.c.c. Al phase. The fraction of f.c.c. Al phase (containing a significant amount of Zn) of the coating layer increases with increasing the chemical composition of Al of the galvanizing bath. The h.c.p. MgZn2 phase was formed in the Al/Mg-containing Zn-6Al-2Mg and Zn-10Al-5Mg coating layers, forming Zn-Al-MgZn2 eutectic microstructure. The primary MgZn2 phase was additionally formed in the Zn-10Al-5Mg coating layers containing high concentrations of Al and Mg. The Vickers hardness values of Zn-0.2Al, Zn-6Al-2Mg, and Zn-10Al-5Mg coating layers were 59.1 ± 1.2 HV, 161.2 ± 5.7 HV, and 215.5 ± 40.3 HV, respectively. The addition of Al and Mg increased the hardness of the coating layer by increasing the fraction of the Al phase (containing Zn) and MgZn2 intermetallic compound, which were harder than the Zn phase.

Effect of Strip-cast Conditions on the Formation of Microstructures in Nd-Fe-B alloys (Strip-cast 조건이 Nd-Fe-B 합금의 미세조직 형성에 미치는 영향)

  • Lee, D.H.;Jang, T.S.;Kim, D.H.;Kim, Andrew S.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.34-40
    • /
    • 2002
  • In order to improve the microstructure of the strip cast Nd-Fe-B alloys that are frequently used for production of high energy sintered magnets, influence of various strip casting conditions on the microstructure and phase formation and distribution were investigated. Nd-Fe-B strips consisting of microstructures suitable for preparation of high energy sintered magnets could be obtained when the wheel speed was below 5 m/s. The compositional limit that can avoid the crystallization of free iron in the as-cast state was estimated to be Nd$\_$14/Fe$\_$79/B$\_$7/. Regardless of the compositional variation, <001> preferred orientation of Nd$_2$Fe$\_$14/B normal to the strip surface was always occurred below 5 m/s, which would eventually enhance the grain alignment during pressing the powder under a magnetic field. While the coercivity of the strip cast alloys increased with the increase of the wheel speed, mainly due to the refinement of Nd$_2$Fe$\_$14/B grains, it decreased with the reduction of Nd content in the alloy composition as the formation of free iron increased.

The Study on Peak Disappearance of Minor Phase and Formation of ${Al_3}Ti$ in Mechanically Alloyed Al-Ti Samples (기계적 합금화한 Al-Ti 시료에서 미소상 피이크의 소멸현상과 ${Al_3}Ti$ 형성에 관한 연구)

  • Kim, Jin-Gon;Kim, Hye-Seong;Kim, Byeong-Hui
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1035-1041
    • /
    • 2001
  • The refining process and solubility of Ti in Al matrix during mechanical alloying (MA) were investigated by using X-ray diffraction (XRD), transmission electron microscopy (TEM) as functions of alloy composition, milling time and ball to powder ratio (BPR). Mechanical alloyed samples were annealed for investigating their stability and the formation behavior of$Al_3Ti$in the temperature range from$200{\circ}C$to$600{\circ}C$. It is observed from present experimental that disappearance of Ti peaks in mechanically alloyed Al-10wt%Ti is not simply attributable to the dissolution of Ti into Al, but associated mainly with extreme refining and/or heavy straining of Ti particles The annealing of the mechanically alloyed Al-Ti powders show differences in aluminide formation behavior when Ti content in Al is equal to or less than l0wt% and higher than l5wt%Ti. When Ti-content in Al is equal to or less than l0wt%, the MA powders transform directly to a global equilibrium state forming $DO_{22}- type\;Al_3$Ti above$400{\circ}C$. In the Al-Ti samples with equal to or higher than l5wt%Ti, transitional phases of cubic$Al_3Ti$and tetragonal $Al_{24}Ti_8$ are formed above$400{\circ}C$. They are stable only below$500{\circ}C$, and, $DO_{22}-type\;Al_3Ti$ becomes dominant aluminide at temperature higher than$ 600{\circ}C$.

  • PDF

Hydrogen Storage Property of MgH2 Synthesized by Hydriding Chemical Vapor Deposition (Hydriding Chemical Vapor Deposition 방법으로 제조된 MgH2의 수소저장 특성)

  • Park, Kyung-Duck;Han, Jeong-Seb;Kim, Jin-Ho;Kim, Byung-Kwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.380-385
    • /
    • 2011
  • $MgH_2$ was synthesized by hydriding chemical vapor deposition (HCVD). In this study, we examined the hydrogen storage property of $MgH_2$ synthesized by HCVD. The results of pressure-composition-temperature (PCT) measurement showed that the HCVDed $MgH_2$ reversibly absorbed hydrogen as much as 6 wt%. Each hydrogenation rate was very greater than the conventional alloy methods. The reason was that the particle size made by HCVD was small as approximately 1 ${\mu}m$. The PCT of $MgH_2$ made by HCVD methode was similar to a commercial $MgH_2$. The ${\Delta}H$ and ${\Delta}S$ value are respectively -76.8 $kJ/mol{\cdot}H_2$ and -137.4 $kJ/mol{\cdot}H_2$. Mg made by HCVD methode was activated easily than commercial Mg. Also the initial reaction rate was faster than that of commercial $MgH_2$. 70% of the total storage were stored during 400s.

Pore Gradient Nickel-Copper Nanostructured Foam Electrode (기공 경사화된 나노 구조의 니켈-구리 거품 전극)

  • Choi, Woo-Sung;Shin, Heon-Cheol
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.270-276
    • /
    • 2010
  • Nickel-copper foam electrodes with pore gradient micro framework and nano-ramified wall have been prepared by using an electrochemical deposition process. Growth habit of nickel-copper co-deposits was quite different from that of pure nickel deposit. In particular, the ramified structure of the individual particles was getting clear with chloride ion content in the electrolyte. The ratio of nickel to copper in the deposits decreased with the distance away from the substrate and the more chloride ions in the electrolyte led to the more nickel content throughout the deposits. Compositional analysis for the cross section of a ramified branch, together with tactical selective copper etching, proved that the copper content increased with approaching central region of the cross section. Such a composition gradient actually disappeared after heat treatment. It is anticipated that the pore gradient nickel-copper nanostructured foams presented in this work might be a promising option for the high-performance electrode in functional electrochemical devices.

Effect of Na2P2O7 Electrolyte and Al Alloy Composition on Physical and Crystallographical Properties of PEO Coating Layer : I. Physical Properties of PEO Layer (플라즈마 전해 산화 코팅에 있어서 인산염 전해액과 모재 성분 변화가 Al 산화피막 물성에 미치는 영향 I. PEO층의 물성)

  • Kim, Bae-Yeon;Kim, Jeong-Gon;Lee, Deuk-Yong;Jeon, Min-Seok;Kim, Yong-Nam;Kim, Sung-Youp;Kim, Kwang-Youp
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.3
    • /
    • pp.241-246
    • /
    • 2012
  • Physical properties of plasma electrolytic oxidized layers of 8 different kinds of Al alloys, A-1100, A-2024, A-5052, A-6061, A-6063, A-7075, ACD-7B and ACD-12 were investigated. The electrolyte for plasma electrolytic oxidation was mixture of distilled water, $Na_2P_2O_7$, KOH and some metal salts. Growth rate of oxide layer was slower in $Na_2P_2O_7$ electrolyte system than in $Na_2SiO_3$ system, and Ra50 surface roughness of oxidized layer was below $1.2{\mu}m$. Surface hardness in $Na_2P_2O_7$ electrolyte system is higher than in $Na_2SiO_3$ system, and roughness was lower in $Na_2P_2O_7$ electrolyte system than in $Na_2SiO_3$ system.