• Title/Summary/Keyword: Alloy composition

Search Result 762, Processing Time 0.036 seconds

Effect of Hydrofluoric Acid on the Electrochemical Properties of Additive Manufactured Ti and Its Alloy (적층가공된 티타늄 합금의 전기화학적 특성에 미치는 불산의 영향)

  • Kim, K.T.;Cho, H.W.;Chang, H.Y.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.166-175
    • /
    • 2018
  • In this study, the electrochemical properties of CP-Ti (commercially pure titanium) and Ti-64 (Ti-6Al-4V) were evaluated and the effect of hydrofluoric acid on corrosion resistance and electrochemical properties was elucidated. Additive manufactured materials were made by DMT (Directed Metal Tooling) method. Samples were heat-treated for 1 hour at $760^{\circ}C$ and then air cooled. Surface morphologies were studied by optical microscope and SEM. Electrochemical properties were evaluated by anodic polarization method and AC-impedance measurement. The oxide film formed on the surface was analyzed using an XPS. The addition of HF led to an increase in the passive current density and critical current density and decreased the polarization resistance regardless of the alloys employed. Based on the composition of the oxide film, the compositional difference observed by the addition of HF was little, regardless of the nature of alloys. The Warburg impedance obtained by AC-impedance measurement indicates the dissolution of the constituents of CP-Ti and Ti-64 through a porous oxide film.

Ansys를 이용한 셀카봉 해석 및 새로운 설계 제안

  • Lee, Jeong-Hyeok;Jang, Ho-Ik
    • CDE review
    • /
    • v.21 no.2
    • /
    • pp.61-64
    • /
    • 2015
  • In this paper, the FREECAD 0.14 was used for modeling conventional Selfie-stick and the newly proposed Selfie-stick design. The purpose of this paper is to demonstrate the utility of FREECAD 0.14, which is open-source and still in development for further use. After modeling the conventional Selfie-stick, CatiyaV5 was used to assemble FREECAD 0.14 drawn elements. Main issue in newly designed Selfie-stick is the portability. To improve portability of the Selfie-stick, folding mechanism was adopted from folding LED stands. Several mechanisms were adopted to improve user convenience as well. Ansys 14.0 was used for structural analyses of conventional Selfie-stick model and the newly designed model as well. Several simplifications for the models were needed to process the analyses. When analyzing the newly designed model various materials were used one by one to find compatible composition. Using Magnesium Alloy for the stick and the hand grip was found to be compatible. FREECAD was useful for suggestion of the newly designed model but not so much useful to design an actual product. Various efforts would make FreeCAD the best choice for industrial use for free as it is named.

  • PDF

The Relationship Between Hydrogen Trapping Behavior and SSCC Suceptibility of API X60/65 Grade Steels

  • Lee, Jae Myung;Kim, Jin Suk;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.109-116
    • /
    • 2003
  • It is well known that SSCC (sulfide stress corrosion cracking) is caused by drastic ingression of hydrogen during the service and accumulation of hydrogen near the potential crack initiation site in the material. It is important to characterize the hydrogen trapping behavior to evaluate the service performance of the high strength pipeline steels. In this study. the relationship between the hydrogen trapping behavior and SSCC susceptibility is evaluated in terms of alloy composition, microstructure and carbide behavior. The hydrogen trapping behavior was measured by electrochemical hydrogen permeation test cell (Devanathan cell). The SSCC susceptibility is evaluated by constant extension rate test and constant strain lest method. The hydrogen trapping behavior is affected greatly by microstructure and nature of carbide particles. The fine TiC, and NbC in the matrix of ferritic structure acts as strong irreversible trap sites whereas the bainitic structure acts as reversible trap site. The SSCC susceptibility is closely related to not only the hydrogen trapping behavior but also the loading condition. As the activity of reversible trap site increases, SSCC susceptibility decreases under static loading condition below yield strength, whereas SSCC susceptibility increases under dynamic loading condition or above yield strength. As the activity of irreversible trap site increases. SSCC susceptibility increases regardless of loading condition. It is cased by the mixed effect of dislocation on hydrogen diffusion and trapping behavior.

Metallurgical Study of Bronze Artifacts Excavated from Miruksa Temple (미륵사지 출토 청동유물의 금속학적 연구)

  • Chung, K.R.;Kim, Y.C.;Maeng, S.C.
    • Journal of Conservation Science
    • /
    • v.1 no.1 s.1
    • /
    • pp.27-39
    • /
    • 1992
  • Metallurgical studies of the bronze artifacts excavated from Miruksa Temple were performed by chemical analysis and metallographic observation. Alloy systems of the bronze artifacts were classified into two groups of Cu-Sn and Cu-Sn-Pb, according to the items. The contents of impurities such as Sb, As, Ni and Fe in bronze artifacts are within the limiting range of the mod ern standard bronze castings. Chemical compositions of the kitchen utensils such as bronze vessels and dishes in the Unified Silla dynasty, are in the follow ing range, Cu : 74.8-79.4% and Sn : 18.6-21.1%. Chemical composition of the Buddha-image in Koryo dynasty are 820Cu-7.0Sn-10.3Pb, showing increased Pb content and decreased Sn content. The results of chemical analysis suggest that the chemical compositions were good controlled. Any casting defects such as voids and shrinkage holes are not found microscopically, indicating high casting skill. Zinc atoms are not contained in the all bronze artifacts of Miruksa Temple site. This is the common facts founded in the east asian bronze artifacts of Korea, China and Japan. It is comparable with the European bronze of Cu-Sn-Pb-Zn system, after the Middle Age.

  • PDF

Characteristics and Corrosion Behaviors of Quaternary (Co/Ni/P/Mn) Electroless Plating (4성분 무전해도금(Co/Ni/P/Mn)의 특성 및 부식거동)

  • Hur, Ho
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.136-140
    • /
    • 2014
  • The quaternary alloy (Co/Ni/P/Mn) coatings were prepared using electroless plating on the polypropylene. Compositions of the quaternary alloys (Co/Ni/P/Mn) were controlled by the amount of agents. The composition by EDS, morphology with SEM, film thickness, and surface electrical resistance of the samples were measured. Higher phosphorous content samples give larger electric resistance, thus a relationship is admitted between P content and electric resistance. The corrosivity of the coatings were evaluated by electrochemical methods in the 3.5 wt% NaCl and 5.0 wt% $H_2SO_4$ solutions, respectively. It was concluded that phosphorous addition enhances resistivity in the corrosion.

Design & Development of KSLV-II Ullage Motor (KSLV-II 가속모터 설계 및 개발)

  • Oh, Jisung;Lee, Gwan Joo;Kim, Sujeong;Kim, Hanjoon;Park, Euiyong;Kwon, Hyukho;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1122-1126
    • /
    • 2017
  • KSLV-II ullage motor is a type of the separation motor of Korea Space Launch Vehicle. Simultaneously operates with the retro Motor to perform the stage separation. The internal ballistics design, application of propellant composition, and the design of the combustion chamber and the canted nozzle were performed in accordance with the target performance of the ullage motor. Ti-6Al-4V alloy was applied to the combustion as material of chamber and nozzle. The heat resistant material of the nozzle was selected to ensure the heat resistance of the propellant containing a large amount of aluminum. And the combustion performance of the ullage motor satisfying the KSLV-II requirements was secured by performing the ground combustion test.

  • PDF

Practical Model for Predicting Beta Transus Temperature of Titanium Alloys

  • Reddy, N.S.;Choi, Hyun Ji;Young, Hur Bo
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.381-387
    • /
    • 2014
  • The ${\beta}$-transus temperature in titanium alloys plays an important role in the design of thermo-mechanical treatments. It primarily depends on the chemical composition of the alloy and the relationship between them is non-linear and complex. Considering these relationships is difficult using mathematical equations. A feed-forward neural-network model with a back-propagation algorithm was developed to simulate the relationship between the ${\beta}$-transus temperature of titanium alloys, and the alloying elements. The input parameters to the model consisted of the nine alloying elements (i.e., Al, Cr, Fe, Mo, Sn, Si, V, Zr, and O), whereas the model output is the ${\beta}$-transus temperature. The model developed was then used to predict the ${\beta}$-transus temperature for different elemental combinations. Sensitivity analysis was performed on a trained neural-network model to study the effect of alloying elements on the ${\beta}$-transus temperature, keeping other elements constant. Very good performance of the model was achieved with previously unseen experimental data. Some explanation of the predicted results from the metallurgical point of view is given. The graphical-user-interface developed for the model should be very useful to researchers and in industry for designing the thermo-mechanical treatment of titanium alloys.

Magnetic Properties and the Order-disorder Phase Transformation of (Fe1-XCoX) Pt Magnetic Thin Films

  • Na, K.H.;Park, C.H.;Na, J.G.;Jang, P.W.;Kim, C.S.;Lee, S.R.
    • Journal of Magnetics
    • /
    • v.4 no.4
    • /
    • pp.119-122
    • /
    • 1999
  • Magnetic properties and crystal structures of (Fe1-XCoX) Pt (X = 0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0) ternary thin films were investigated. The order-disorder phase transformation of FePt thin films during annealing was also studied by x-ray diffraction and M ssbauer spectroscopy. The magnetic thin films were deposited on glass substrates using a dc sputtering method and were subsequently annealed at 400~$700^{\circ}C$ in a high vacuum. The as-deposited films exhibited a high degree of the <111> preferred orientation and the preferred orientation was not destroyed even after the subsequent post annealing. The coercivity of the ($Fe_xCo_{1-x}$) Pt thin films annealed at $700^{\circ}C$ showed a minimum value at the equiatomic composition of the Fe and Co atoms. The ordered structure of the FePt alloy was thought to have formed from the disordered structure by an inhomogeneous process, which was confirmed by the asymmetric peak shapes and M ssbauer spectra.

  • PDF

Solidification Microstructures with Carbon Contents and Solidification Rates in Modified 12Cr-lMo Steels (개량 12Cr-1Mo강에서 탄소 함량 및 응고속도에 따른 응고 조직 형성 거동)

  • Eum C. Y;Lee J. H;Hur S. K;Chi B. H;Ryu S. H
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.101-109
    • /
    • 2004
  • The influences of solidification rates and carbon contents on the formation of the $\delta$-ferrite were studied by directional solidification in modified 12%Cr-l %Mo steels. Directional solidification experimental results showed that solidification microstructure depended on solidification rate and carbon content and chromium equivalent. The length of the mushy zone increased and the dendrite arm spacings decreased as the solidification rate increased. The volume fraction of the 8-ferrite decreased with increasing the solidification rate and carbon content. The volume fraction of the ferrite showed much higher at low solidification rates with planar and cellular interfaces than that at high solidification rates with dendritic interface. It is expected that macro-segregation of C causes lower C content at the lower solidification fraction in the directionally solidified sample, where lower C results in higher volume fraction of the ferrite. In order to estimate solidification microstructure in modified 12Cr-l%Mo steels, various solidification conditions, such as solidification rate, cooling rate, segregation, alloy composition, should be considered.

The Hydrogen Storage Characteristics of Ti-Zr-Cr-V Alloys (Ti-Zr-Cr-V 합금의 수소저장 특성)

  • Cho, Sung-Wook;Han, Chang-Suck;Park, Choong-Nyeon
    • Journal of Hydrogen and New Energy
    • /
    • v.9 no.3
    • /
    • pp.101-110
    • /
    • 1998
  • The change of hydrogen storage characteristics by substituting zirconium for a portion of titanium in Ti-Cr-V alloys has been studied. The zirconium substitution decreased the plateau pressure and hysteresis of the PC isotherm. However, it decreased the hydrogen storage capacity and increased slopping in PC isotherm by forming $Cr_2Zr$ phase. By modifying the composition ratio of titanium to chromium, thereby suppressing the formation of $Cr_2Zr$ phase, we got an alloy having very high hydrogen storage capacity. The heat treatment of the alloys improved the flatness of plateau very much without a decrease in the maximum and the effective hydrogen storage capacities.

  • PDF