• Title/Summary/Keyword: Alloy composition

Search Result 747, Processing Time 0.03 seconds

Development of Eco-friendly Lead Substitute Materials (친환경 납추 대체소재 개발)

  • Gwon, Jin Uk;Song, Hee Jin;Hwang, Dae Youn;Kim, Hye Sung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.3
    • /
    • pp.130-138
    • /
    • 2022
  • In this study, the characteristic of an amorphous fishing weight material according to controlling the alloy type and alloy composition of the glass forming agent added in PbO2 oxide was investigated. According to the experimental, when the glass forming agent of 15wt%SiO2-1wt%MgO content was added in β-PbO2, an amorphous fishing weight substitute having the lowest friction coefficient, excellent corrosion resistance and durability was obtained. The cell number of PbO2-15wt%SiO2-1wt%MgO sample incubated in cell culture fluid tended to hardly decrease even after a lapse of 24 hours, It means that the fabricated PbO2-15wt%SiO2-1wt%MgO sample is significantly less-toxic and harmless to the human body, unlikely to metallic lead. It is considered that an fabricated amorphous fishing weight substitute proved to have a potential as an eco-friendly material with little marine pollution.

The Development of ADI(Austempered Ductile Iron) Lower Control Arm in 1050MPa Ultra-light (1050MPa급 초경량 오스템퍼드 구상흑연주철제 콘트롤암 개발)

  • Jeongick Lee
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.2
    • /
    • pp.9-14
    • /
    • 2023
  • This study is shown the result of the first year to develop an export 1050MPa-class lightweight ductile iron castings Austempered control arm through the research process to obtain the following results. First, the structure of the optimal design Layout design and development of the component, and then achieve them through the Control Arm rigidity and optimal structure design and robust design of the focus areas of the expected stress Control Arm. Second, to develop a Control Arm reflects the high rigidity and high performance lightweight structures. Control Arm them developed to meet the design and rigidity as required by the consumer through the hollow, and to develop a process for the Core. Third, through optimum alloy composition and heat treatment methods will be derived to derive the amount of iron alloy (Cu, Ni, Mo) and Austempered heat treated and tempered condition. Fourth, through the development of optimum molding technology development component to develop the optimum ADI for the low-stiffness, high-rigidity component development, it attempts to develop a high-strength casting forming technology..

Study on the Elemental Diffusion Distance of a Pure Nickel Layer Additively Manufactured on 316H Stainless Steel (316H 스테인리스 강 위에 적층 제조된 순수 니켈층의 원소 확산거리 연구)

  • UiJun Ko;Won Chan Lee;Gi Seung Shin;Ji-Hyun Yoon;Jeoung Han Kim
    • Journal of Powder Materials
    • /
    • v.31 no.3
    • /
    • pp.220-225
    • /
    • 2024
  • Molten salt reactors represent a promising advancement in nuclear technology due to their potential for enhanced safety, higher efficiency, and reduced nuclear waste. However, the development of structural materials that can survive under severe corrosion environments is crucial. In the present work, pure Ni was deposited on the surface of 316H stainless steel using a directed energy deposition (DED) process. This study aimed to fabricate pure Ni alloy layers on an STS316H alloy substrate. It was observed that low laser power during the deposition of pure Ni on the STS316H substrate could induce stacking defects such as surface irregularities and internal voids, which were confirmed through photographic and SEM analyses. Additionally, the diffusion of Fe and Cr elements from the STS316H substrate into the Ni layers was observed to decrease with increasing Ni deposition height. Analysis of the composition of Cr and Fe components within the Ni deposition structures allows for the prediction of properties such as the corrosion resistance of Ni.

Production and Mechanical Properties of Mg-Zn-Ce Amorphous Alloys by Dispersion of Ultrafine hcp-Mg Paticles (hcp-Mg 입자분산형 Mg-Zn-Ce계 비정질합금의 제조와 기계적 성질)

  • Kim, Seong-Gyu;Park, Heung-Il;Kim, U-Yeol;Jo, Seong-Myeong;Kim, Yeong-Hwan;Inoue, A.;Masumoto, T.
    • Korean Journal of Materials Research
    • /
    • v.4 no.8
    • /
    • pp.847-854
    • /
    • 1994
  • An amorphous single phase and coexistent amorphous and hcp-Mg phases in Mg-Zn-Ce system were found to form in the composition ranges of 20 to 40% Zn, 0 to 10% Ce and 5 to 20% Zn, 0 to 5% Ce, respectively. A $Mg_{85}Zn_{12}Ce_{3}$ amorphous alloy containing nanoscale hcp-Mg particles was found to form either by melt spinning or by heat treatment of melt -spun ribbon. The particle size of the hcp-Mg phase can be controlled in the range of 4 to 20 nm. The mixed phase alloy prepared thus has a good bending ductility and exhibits high ultimate tensile strength($\sigma_{B}$) ranging from 670 to 930 MPa and fracture elongation($\varepsilon_{f}$) of 5.2 to 2.0%. The highest specific strength($\sigma_{B}$/density =$\sigma_{s}$)$3.6 \times 10^5N \cdot m/kg$. It should be noted that the highest values of flB, US and ?1 are considerably higher than those (690MPa,$2.5 \times 10^5N \cdot m/kg$and 2.5%) for amorphous Mg-Zn-Ce alloys. The increase of the mechanical strengths by the formation of the mixed phase structure is presumably due to a dispersion hardening of the hcp supersaturated solution which has the hardness higher than that of the amorphous phase with the same composition.

  • PDF

Characterization and Formation Mechanism of Zr-Cu and Zr-Cu-Al Metallic Glass Thin Film by Sputtering Process

  • Lee, Chang-Hun;Sun, Ju-Hyun;Moon, Kyoung-Il;Shin, Seung-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.271-272
    • /
    • 2012
  • Bulk Metallic Glasses (BMGs or amorphous alloy) exhibit high strength and good corrosion resistance. Applications of thin films and micro parts of BMGs have been used a lot since its inception in the research of BMGs. However, Application and fabrication of BMGs are limited to make structural materials. Thin films of BMGs which is sputtered on the surface of structural materials by sputtering process is used to improve limits about application of BMGs. In order to investigate the difference of properties between designed alloys and thin films, we identified that thin films deposited on the surface that have the characteristic of the amorphous films and the composition of designed alloys. Zr-Cu (Cu=30, 35, 38, 40, 50 at.%) and Zr-Cu-Al (Al=10 at.% fixed, Cu=26, 30, 34, 38 at.%) alloys were fabricated with Zr (99.7% purity), Cu (99.997% purity), and Al (99.99% purity) as melting 5 times by arc melting method before rods 2mm in diameter was manufactured. In order to analyze GFA (Glass Forming Ability), rods were observed by Optical Microscopy and SEM and $T_g$, $T_x$, ($T_x$ is crystallization temperature and $T_g$ is the glass transition temperature) and Tm were measured by DTA and DSC. Powder was manufactured by Gas Atomizer and target was sintered using powder in large supercooled liquid region ($=T_x-T_g$) by SPS(Spark Plasma Sintering). Amorphous foil was prepared by RSP process with 5 gram alloy button. The composition of the foil and sputtered thin film was analyzed by EDS and EPMA. In the result of DSC curve, binary alloys ($Zr_{62}Cu_{38}$, $Zr_{60}Cu_{40}$, $Zr_{50}Cu_{50}$) and ternary alloys ($Zr_{64}Al_{10}Cu_{26}$, $Zr_{56}Al_{10}Cu_{34}$, $Zr_{52}Al_{10}Cu_{38}$) have $T_g$ except for $Zr_{70}Cu_{30}$ and $Zr_{60}Al_{10}Cu_{30}$. The compositions with $T_g$ made into powders. Figure shows XRD data of thin film showed similar hollow peak.

  • PDF

Effect of Si Content on the Phase Formation Behavior and Surface Properties of the Cr-Si-Al-N Coatings (Cr-Si-Al-N 코팅의 상형성 및 표면 물성에 미치는 Si 함량의 영향)

  • Choi, Seon-A;Kim, Hyung-Sun;Kim, Seong-Won;Lee, Sungmin;Kim, Hyung-Tae;Oh, Yoon-Suk
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.580-586
    • /
    • 2016
  • Cr-Si-Al-N coating with different Si content were deposited by hybrid physical vapor deposition (PVD) method consisting of unbalanced magnetron (UBM) sputtering and arc ion plating (AIP). The deposition temperature was $300^{\circ}C$, and the gas ratio of $Ar/N_2$ were 9:1. The CrSi alloy and aluminum targets used for arc ion plating and sputtering process, respectively. Si content of the CrSi alloy targets were varied with 1 at%, 5 at%, and 10 at%. The phase analysis, composition and microstructural analysis performed using x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) including energy dispersive spectroscopy (EDS), respectively. All of the coatings grown with textured CrN phase (200) plane. The thickness of the Cr-Si-Al-N films were measured about $2{\mu}m$. The friction coefficient and removal rate of films were measured by a ball-on-disk test under 20N load. The friction coefficient of all samples were 0.6 ~ 0.8. Among all of the samples, the removal rate of CrSiAlN (10 at% Si) film shows the lowest values, $4.827{\times}10^{-12}mm^3/Nm$. As increasing of Si contents of the CrSiAlN coatings, the hardness and elastic modulus of CrSiAlN coatings were increased. The morphology and composition of wear track of the films was examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy, respectively. The surface energy of the films were obtained by measuring of contact angle of water drop. Among all of the samples, the CrSiAlN (10 at% Si) films shows the highest value of the surface energy, 41 N/m.

The Structural and Material Characteristics of Bogjeon Chongtong from the Joseon Dynasty (조선시대 복전총통의 구조와 재료적 특징)

  • Lee Jihyun;Huh Ilkwon;Moon Jieun;Shin Sujung
    • Conservation Science in Museum
    • /
    • v.30
    • /
    • pp.101-126
    • /
    • 2023
  • Bogjeon chongtong, a military firearm from the Joseon Dynasty, remains undocumented with extant ones only discovered relatively recently. This study examined the structural and material characteristics of the bogjeon chongtong by comparing the specifications, shapes, inscriptions, and components of 12 pieces of bogjeon chongtong, which have not been described in detail to date. Bogjeon chongtong has certain set properties in terms of its specifications and shapes. This study also estimated the number of projectiles fired at once by comparing the specifications and records. In terms of design, the handle slot has an outline engraved in relief along with the name of the artifact. The inscribed outline is the most notable feature of the bogjeon chongtong that is not seen in other chongtong artifacts. Therefore, this study analyzed the inscription techniques used in the production process. The main ingredients of bogjeon chongtong are copper and tin, with a tin content of 6wt%. It was confirmed that this is highly similar to the average composition of bronze gunpowder weapons of the Joseon Dynasty as identified in prior research, and that it is also similar to the bronze gunmetal of medieval Europe. These conclusions were drawn in consideration of the material properties required for gunpowder weapons, which allows the inference that the materials used for firearms were selected by prioritizing functionality based on the alloy ratio.

Electronic Structure of GaxIn1-xSbyAs1-y: Band Alignments Based on UTB Calculations (GaxIn1-xSbyAs1-y의 전자적 구조: UTB 방법에 의한 밴드정렬상태)

  • Shim, Kyu-Rhee
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.461-467
    • /
    • 2011
  • The valence band maximum and the conduction band miminum of GaAs, GaSb, InAs, and InSb (constituent binaries of the quaternaty alloy $Ga_xIn_{1-x}Sb_yAs_{1-y}$) are calculated by using TB analytical approach method. The band alignment types of their heterojunctions are determined directly from their relative position of band edges (VBM and CBM). For example, the GaAs/InAs, GaAs/InSb, and GaSb/InSb are in a type-I, the GaAs/GaSb in a type-II, and the GaSb/InAs and InSb/InAs in a type-III, respectively. The composition dependent VBM and CBM for the $Ga_xIn_{1-x}Sb_yAs_{1-y}$ alloy are obtained by using the univeral tight binding method. For the alloyed heterojunctions, the band alignments can be controlled by changing the composition which induce a band type transition. For the alloy $Ga_xIn_{1-x}Sb_yAs_{1-y}$ lattice mathced to GaSb, the type-II band alignment in the region of $x{\leq}0.15$ is changed to the type-III in the region of $x{\geq}0.81$. On the other hand, the alloy $Ga_xIn_{1-x}Sb_yAs_{1-y}$ lattice mathced to InAs has the type-II band alignment in the region of $x{\leq}0.15$ and the type-III band alignment in the region of $x{\geq}0.81$, respectively.

Microstructure and Magnetic Properties of Rapidly Solidified Nd-Fe(-Co) and Sm-Co(-Fe) Laves Compounds (급속냉각된 Nd-Fe(-Co)와 Sm-Co(-Fe)계 Laves 화합물의 미세조직과 자기특성)

  • 이우영;최승덕;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.1
    • /
    • pp.17-24
    • /
    • 1991
  • Laves phases of $NdFe_2$, $Nd{(Fe_{0.5})}_2$, $SmCo_2$ and $Sm{(Fe_{0.5}Co_{0.5})}_2$ stoichiometry were prepared using a rapid solidification technology. Low temperature magnetic properties show ferromagnetic behaviors for the $Nd{(Fe_{0.5}Co_{0.5})}_2$, $SmCo_2$ and $Sm{(Fe_{0.5}Co_{0.5})}_2$Nd(Feo,Coo,) Laves compounds while a sort of spin reorientation has been suggested for the supposed composition of $NdFe_2$ alloy. This rapidly solidified $NdFe_2$ alloy is believed to consist of metastable rhombohedral $NdFe_7$ phase plus fine particles of Nd-rich phase. Some evidence of phase transition from the mixture of unstable $NdFe_7$ compound plus Nd-rich to $Nd_2Fe_{17}$ plus Fe-Nd-O phase was obtained after annealing the $NdFe_2$, alloy. The pseudo-binary Laves compound, $Sm{(Fe_{0.5}Co_{0.5})}_2$ exhibits a high coercivityof 4 kOe at room temperature with Curie temperature of $400^{\circ}C$ while the $Nd{(Fe_{0.5}Co_{0.5})}_2$ compound shows a magnetic moment of $2.8\;{\mu}_B/f.u.$.

  • PDF

Magnetic Properties of Melt-spun Fe-Nd-C Alloys (급속응고에 의해 제조된 Fe-Nd-C 합금의 자기적 특성)

  • Jang, T.S.;Lim, K.Y.;Cho, D.H.
    • Korean Journal of Materials Research
    • /
    • v.7 no.12
    • /
    • pp.1063-1069
    • /
    • 1997
  • For me1t-spun Fe-Nd-C alloys, variation of phase development and magnetic properties with the variety of alloy compositions and production conditions were investigated. To find out whether hard magnetic $Fe_{14}Nd_2C$ is crystallized direct1y from the melt by rapid quenching, the phase development of the as-spun ribbons spun at various speed was a1so studied. For the ribbons spun at 10m/s, ${\alpha}-Fe$ was the primary crystallization phase followed by the secondary $Fe_{17}Nd_2C$. At 20m/s ${\alpha}-Fe$ was suppressed so that the primary $Fe_{17}Nd_2C$ coexisted with the secondary ${\alpha}-Fe$ and the amorphous phase. Above 30m/s the ribbons were a1most amorphous, and the amorphization was complete at 40m/s. $Fe_{14}Nd_2C$ therefore was not found in as-spun state but obtained after heat treating the ribbons. The effective temperature range ($700{\sim}900^{\circ}C$) in which $Fe_{14}Nd_2C$ can be obtained was wider than that of a cast alloy. An alloy made with the wheel speed of 20 or 30m/s yielded higher coercivities after heat treatment. In iron-rich Fe-Nd-C, the composition range in which a high coercivity (more than 10kOe) is expected is narrow, i.e., 77~78 Fe and 7~8 C(at.%).

  • PDF