Production and Mechanical Properties of Mg-Zn-Ce Amorphous Alloys by Dispersion of Ultrafine hcp-Mg Paticles

hcp-Mg 입자분산형 Mg-Zn-Ce계 비정질합금의 제조와 기계적 성질

  • Kim, Seong-Gyu (Dept. of Production & Weldding Eng., Pusan National Unv. of Technology) ;
  • Park, Heung-Il (Dept. of Production & Weldding Eng., Pusan National Unv. of Technology) ;
  • Kim, U-Yeol (Dept. of Production & Weldding Eng., Pusan National Unv. of Technology) ;
  • Jo, Seong-Myeong (Dept. of Production & Weldding Eng., Pusan National Unv. of Technology) ;
  • Kim, Yeong-Hwan (Dept. of Metallurgical Eng., Pusan National Univ. of Technology) ;
  • Inoue, A. (Institute of Materials Research, Tohoku University) ;
  • Masumoto, T. (Institute of Materials Research, Tohoku University)
  • 김성규 (부산공업대학교 생산가공공학과) ;
  • 박흥일 (부산공업대학교 생산가공공학과) ;
  • 김우열 (부산공업대학교 생산가공공학과) ;
  • 조성명 (부산공업대학교 생산가공공학과) ;
  • 김영환 (부산공업대학교 금속공학과) ;
  • ;
  • Published : 1994.12.01

Abstract

An amorphous single phase and coexistent amorphous and hcp-Mg phases in Mg-Zn-Ce system were found to form in the composition ranges of 20 to 40% Zn, 0 to 10% Ce and 5 to 20% Zn, 0 to 5% Ce, respectively. A $Mg_{85}Zn_{12}Ce_{3}$ amorphous alloy containing nanoscale hcp-Mg particles was found to form either by melt spinning or by heat treatment of melt -spun ribbon. The particle size of the hcp-Mg phase can be controlled in the range of 4 to 20 nm. The mixed phase alloy prepared thus has a good bending ductility and exhibits high ultimate tensile strength($\sigma_{B}$) ranging from 670 to 930 MPa and fracture elongation($\varepsilon_{f}$) of 5.2 to 2.0%. The highest specific strength($\sigma_{B}$/density =$\sigma_{s}$)$3.6 \times 10^5N \cdot m/kg$. It should be noted that the highest values of flB, US and ?1 are considerably higher than those (690MPa,$2.5 \times 10^5N \cdot m/kg$and 2.5%) for amorphous Mg-Zn-Ce alloys. The increase of the mechanical strengths by the formation of the mixed phase structure is presumably due to a dispersion hardening of the hcp supersaturated solution which has the hardness higher than that of the amorphous phase with the same composition.

Mg-Zn-Ce계 합금에서 비정질 단상 및 hcp-Mg입자분산형 비정질합금이 20-40%, Zn, 0-10%Ce과 5-20%Zn, 0-5%Ce 의 조성범위에서 각각 생성되었다. 초미세 hcp-Mg입자분산형 $Mg_{85}Zn_{12}Ce_{3}$비정질합금은 급속응고 또는 급속응고리본의 열처리에 의해 Mg입자의 입경을 4-20nm의 범위로 조절할 수 있었으며, 이 범위에서는 밀착굽힘이 가능할 만큼 충분한 인성을 가지고 있었다. 이 합금의 최대인장강도($\sigma_{B}$)와 파단 연신율($\varepsilon_{f}$)은 hcp-Mg입자의 체적분율에 따라서 670-930MPa, 5.2-2.0%의 범위였으며, 최대 비강도($\sigma_{B}$밀도 =$\sigma_{s}$)는 $3.6 \times 10^5N \cdot m/kg$에 달하였다. 이와 같이 Mg입자분산형 비정질 합금의($\sigma_{B}$), ($\sigma_{s}$)그리고 $\varepsilon_{f}$의 최대치가 Mg-Zn-Ce계 비정질합금(690MPa, $2.5 \times 10^5N \cdot m/kg$, 2.5%)보다 월등하게 높다는 것은 주목할 만 하다. 복합상 조직이 형성됨으로서 기계적 강도가 증가하는 것은 동일 조성의 비정질상보다 강한 hcp과포화 고용체의 분산강화에 기인하는 것이라고 고찰되었다.

Keywords

References

  1. J. Appl. Phys. v.31 no.36 P. Duwez;R.H. Willens; W.Klement
  2. Acta Met. v.19 no.725 T. Masumoto;R. Maddin
  3. Rev. Sci. Instr. v.41 no.1237 H.S. Chen;C.E. Miller
  4. Met. Trans. v.3 no.699 H.J. Leamy;H.S. Chen;T.T. Wang
  5. 日本金屬學會誌 v.38 no.835 奈賀;橋本;增本
  6. Jpn. J. Appl. Phys. v.13 no.1889 H. Hujimori;T. Masumoto;Y. Obi;M. Kikuchi
  7. Appl. Phys. Lett. v.26 no.128 T. Egami;P.J. Flanders;C.D. Graham, Jr.
  8. J. Non-Crystal line Solids v.15 no.174 H.S. Chen;D.E. Polk
  9. Jpn. J. Appl. Phys. v.27 no.L479 A. Inoue;H. Tomioka;T. Masumoto
  10. Proc. 1st Japan, Intern. SAMPE. Symposium v.28 no.7 A. Inoue;T. Masumoto;K. Ohtera;K. Kita
  11. Jpn. J. Appl. Phys. v.27 no.L2248 A. Inoue;K. Ohtera;K. Kita;T. Masumoto
  12. Mater. Trans. JIM v.32 no.331 Y.H. Kim;A. Inoue;T. Masumoto
  13. Mater. Trans. JIM v.31 no.747 Y.H. Kim;A. Inoue;T. Masumoto
  14. Mater. Trans. JIM v.32 no.599 Y.H. Kim;A. Inoue;T. Masumoto
  15. J. Non-Crystalline Solids v.5 no.444 H.S. Chen;H.J. Leamy;M. Barmatz
  16. Acta Met. v.19 no.779 D. Weaire;M. Ashby;J. Logan;M.J. Weins