• Title/Summary/Keyword: Alloy 718

Search Result 82, Processing Time 0.026 seconds

Assessment of Recrystallization Behavior in Ingot-Breakdown Process of Alloy 718 (Alloy 718의 잉고트 파쇄공정시 재결정거동에 대한 해석)

  • Yeom, J.T.;Lee, C.S.;Kim, J.H.;Kim, N.Y.;Park, N.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.42-45
    • /
    • 2007
  • Recrystallization behavior during ingot-breakdown process of Alloy 718 was investigated with finite element analysis and experimental approaches. In order to analyze microstructural changes during the cogging process of an Alloy 718 ingot, the side-pressing and heat treatment tests were performed at different temperatures and ram speed. From the side-pressing and heat treatment test results, it was found that microstructural changes during hot forging of Alloy 718 ingot greatly influenced on a close interaction between dynamic and static-recrystallization behaviors. A recrystallization model of Alloy 718 was used to predict the complex microstructural variation during continuous heating and forging processes of the cogging, and the predicted grain size and its distribution were compared with the actual cogged Alloy 718 billet.

  • PDF

Mechanical Properties Evaluation of Gas Tungsten Arc Welding for INCONEL 718 alloy apply to Cryogenic Condition (극저온 환경에 적용되는 INCONEL 718합금의 Gas Tungsten Arc Welding 기계적 특성 평가)

  • Kim, Ki-Hong;Moon, In-Sang;Moon, Il-Yoon;Rhee, Byung-Ho
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.692-698
    • /
    • 2009
  • Inconel 718 alloy has excellent mechanical properties at room temperature, high temperature and cryogenic conditions. UTS of base metal is about 900MPa at room temperature; this is increased up to 1300MPa after heat treatment & aging-hardening. Mechanical properties of Inconel 718 Alloy were similar to those shown in the the results for tensile test; mechanical properties of Inconel 718 alloy's GTAW were similar to those of base metal's properties at room temperature. Mechanical properties at cryogenic conditions were better than those at room temperature. Heat-treated Inconel 718, non- filler metal GTAW on Inconel 718 and GTAW used filler metal on Inconel 718's UTS was 1400MPa at cryogenic condition. As a result, the excellent mechanical properties of Inconel 718 alloy under cryogenic conditions was proved through tensile tests under cryogenic conditions. In addition, weldability of Inconel 718 alloy under cryogenic conditions was superior to that of its base-metal. In this case, UTS of hybrid joint (IS-G) at -100$^{\circ}C$ was 900MPa. Consequently, UTS of Inconel 718 alloy is estimated to increase from -100$^{\circ}C$ to a specific temperature below -100$^{\circ}C$. Therefore, Inconel 718 alloy is considered a pertinent material for the production of Lox Pipe under cryogenic conditions.

Assessment of Grain Size Distribution in Direct Age Processed Alloy 718 (직접시효 처리된 Alloy 718의 결정립분포 해석)

  • Park N. K.;Kim J. H.;Eum C. Y.;Lee C. S.;Yeom J. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.291-294
    • /
    • 2005
  • The microstructure evolution of Alloy 718 during the direct age(DA) process was predicted using the recrystallization model and finite element analysis. The DA process of Alloy 718 was performed in two-step forging using capsulated cylindrical billets of 122mm in diameter and 180mm in height. In order to evaluate the microstructural change during the forging, a dynamic recrystallization model of Alloy 718 was implemented onto the user-subroutine of the commercial FEM code. The prediction of microstructure evolution in DA processed Alloy 718 pancake was compared with experimental results.

  • PDF

Precipitation Behavior of ${\gamma}"$ in Severely Plastic Deformed Ni-base Alloys

  • Kim, Il-Ho;Kwun, S.I.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.962-963
    • /
    • 2006
  • The precipitation behaviors of ${\gamma}"(Ni_3Nb)$ in four Ni-base alloys were investigated. The four alloys were forged Ni20Cr20Fe5Nb alloy, mechanically alloyed Ni20Cr20Fe5Nb alloy, IN 718 alloy and ECAPed(equal channel angular pressing) IN 718 alloy. Aging treatment was employed at either $600^{\circ}C$ or $720^{\circ}C$ for 20 hrs. The TEM observation and hardness test were performed to identify the formation of ${\gamma}"$. The precipitation of ${\gamma}"$ was noticed after aging at $600^{\circ}C$ for 20 hrs in the mechanically alloyed Ni20Cr20Fe5Nb alloy and ECAPed IN 718 alloy, while it was observed after aging at $720^{\circ}C$ for 20 hrs in the forged Ni20Cr20Fe5Nb alloy and IN 718 alloy before ECAP. The lower aging temperature for ${\gamma}"$ precipitation in the mechanically alloyed Ni20Cr20Fe5Nb alloy and ECAPed IN 718 alloy than in the forged Ni20Cr20Fe5Nb alloy and IN 718 alloy before ECAP appeared to be due to the severe plastic deformation which occurred during mechanical alloying or ECAP.

  • PDF

Profile Ring Rolling Manufacturing Technology of Alloy 718 (초내열합금 링제품의 형상링 압연 제조 기술)

  • Kim, T.O.;Kim, K.J.;Kim, N.Y.;Lee, J.M.;Yeom, J.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.425-428
    • /
    • 2009
  • Aerospace engine application needs to stand high temperature and pressure. Because of its mechanical properties such as high strength at high temperature, Alloy 718 is used aerospace engine application about 80%. But alloy 718's mechanical properties cause some problem to manufacturing profile ring like damage of material and mold. In this study, alloy 718's mechanical properties investigated for knowing its formability and using FE-Simulation for designing profile ring roll process and mold shape. Profile ring rolling processing is designed with "Initial material$\rightarrow$Blank$\rightarrow$Linear Ring$\rightarrow$Profilering". Blank's heating temperature is setting $1100^{\circ}C$ for manufacturing a trial profile ring on the basis of FE-Simulation. As a result of manufacturing alloy 718 profile ring, it is possible to make near target profile shape ring with all of the processing condition which gives in this study.

  • PDF

Microstructures and Mechanical Properties of DA Alloy 718 (직접시효 처리된 Alloy718 합금의 미세조직과 기계적 특성)

  • Eum C. Y.;Yeom J. T.;Park N. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.222-225
    • /
    • 2004
  • Alloy 718 is normally used for the stationary and rotating parts of gas turbines due to its excellent combination of high temperature mechanical properties, formability and weldability. The mechanical properties of the Alloy 718 depend very much on grain size, as well as the strengthening phases, ${\gamma}'\;and\;{\gamma}'$. Direct aging is normally used to enhance tensile strengths at high temperatures. The grain structure of the superalloy components is mainly controlled during thermo-mechanical process by the dynamic, meta-dynamic recrystallization and grain growth. In this study, the influence of grain structure and heat treatment on tensile properties of direct-aged Alloy 718 was evaluated.

  • PDF

Assessment of Grain Size Distribution in a Hammer-Forged Alloy 718 Disk (해머 단조된 Alloy 718 디스크의 결정립 분포 해석)

  • 염종택;박노광
    • Transactions of Materials Processing
    • /
    • v.6 no.3
    • /
    • pp.250-256
    • /
    • 1997
  • Hammer forging was employed for Alloy 718 disk. The change in grain size during hot forging depends very much on dynamic recrystallization. The final grain size depends especially on the critical strain$($\varepsilon$_C)$/TEX> for dynamic recrystallization and Zener-Holloman parameter(Z). In this study, the critical strain$($\varepsilon$_C)$, the strain for 50 pct. recrystallization$($\varepsilon$_{0.5})$ and fraction of dynamic recrystallization(Xdyn) were measured by compression tests. FE simulation was also carried out ot predict the evolution of microstructure. The strain, strain rate and temperature distribution predicted by forging simulation can be effectively used to predict the distribution of grain sizes in the forged workpiece. The present model predictions showed an excellent agreement with the microstructural evolution of hammer-forged Alloy 718 disks.

  • PDF

Machining Characteristics Evaluation of Super Heat-resistant Alloy(Inconel 718) According to Cutting Conditions in High Speed Ball End-milling (고속 볼엔드밀링에서 가공조건에 따른 초내열합금 (Inconel 718)의 가공특성 평가)

  • Kwon, Hae-Woong;Kim, Jeong-Suk;Kang, Ik-Soo;Kim, Ki-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • Inconel 718 alloy has been applied to high temperature, high load and corrosion resistant environments due to its superior properties. However, This alloy is a difficult-to-cut nickel-based superalloy and the chipping or notch wear is mainly generated on the cutting edge of the tool. In this study, the machinability of Inconel 718 is investigated to improve tool life under various cutting conditions with TiCN-based coated ball-end mills. The cutting conditions can be suggested to improve both the tool life and machined surface quality in Inconel 718 high speed machining.

Development of Alloy 718 Nozzle for Jet Propulsion Component (고속 추진체용 Alloy 718 노즐 단조품 개발)

  • Kim, Jeoung-Han;Kim, Nam-Yong;Yeom, Jong-Taek;Hong, Jae-Keun;Park, Nho-Kwang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.39-42
    • /
    • 2008
  • Alloy 718 nozzle component was manufactured by hot working and electron beam welding process. In this process, domestic 718 materials were applied and evaluated. Hot compression tests were carried out at a lot of process conditions and microstructural evaluation was investigated. Using the results, FEM simulations were performed in order to optimize the hot working process. After hot working, forged work-pieces were machined and welded by electron beam. Final nozzle component were heat treated and their microstructure and mechanical properties were investigated.

  • PDF

Development of Alloy 718 Nozzle for Ramjet Propulsion Component (Ramjet 고속 추진체용 Alloy 718 합금 노즐 단조품 개발)

  • Park, Nho-Kwang;Kim, Jeoung-Han;Kim, Nam-Yong;Lee, Chae-Hoon;Yeom, Jong-Taek;Hong, Jae-Keun;Baek, Dong-Kyu;Choi, Sung-Gyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.76-82
    • /
    • 2008
  • Alloy 718 nozzle component was manufactured by hot forging and electron beam welding process. In this process, 718 billets produced in domestic company were used and evaluated. Before performing industrial scale hot forging, small size hot compression tests were carried out under various process conditions and then microstructural evaluations were analyzed. Using the results, FEM simulations were performed in order to optimize the hot working process. After hot working, forged work-pieces were machined and welded by electron beam. Final nozzle components were heat treated and their microstructure and mechanical properties were investigated.