• Title/Summary/Keyword: Allowable design values

Search Result 116, Processing Time 0.02 seconds

Characteristic Analysis of Permanent Deformation in Railway Track Soil Subgrade Using Cyclic Triaxial Compression Tests (국내 철도 노반 흙재료의 반복재하에 따른 영구변형 발생 특성 및 상관성 분석)

  • Park, Jae Beom;Choi, Chan Yong;Kim, Dae Sung;Cho, Ho Jin;Lim, Yu Jin
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.64-75
    • /
    • 2017
  • The role of a track subgrade is to provide bearing capacity and distribute load transferred to lower foundation soils. Track subgrade soils are usually compacted by heavy mechanical machines in the field, such that sometimes they are attributed to progressive residual settlement during the service after construction completion of the railway track. The progressive residual settlement generated in the upper part of a track subgrade is mostly non-recoverable plastic deformation, which causes unstable conditions such as track irregularity. Nonetheless, up to now no design code for allowable residual settlement of subgrade in a railway trackbed has been proposed based on mechanical testing, such as repetitive triaxial testing. At this time, to check the DOC or stiffness of the soil, field test criteria for compacted track subgrade are composed of data from RPBT and field compaction testing. However, the field test criteria do not provide critical design values obtained from mechanical test results that can offer correct information about allowable permanent deformation. In this study, a test procedure is proposed for permanent deformation of compacted subgrade soil that is used usually in railway trackbed in the laboratory using repetitive triaxial testing. To develop the test procedure, an FEA was performed to obtain the shear stress ratio (${\tau}/{\tau}_f$) and the confining stress (${\sigma}_3$) on the top of the subgrade. Comprehensive repetitive triaxial tests were performed using the proposed test procedure on several field subgrade soils obtained in construction sites of railway trackbeds. A permanent deformation model was proposed using the test results for the railway track.

Geophysical exploration for the Site Charcteristics of Iljumun Gate in Hwanseongsa Temple (지구물리탐사를 이용한 경산시 환성사 일주문 지반조사)

  • Kim, Ki-Hyun;Suh, Man-Cheol
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.131-136
    • /
    • 2008
  • We performed a non-destructive geophysical survey such as an elastic wave survey, electric specific resistance survey, plate loading test, etc. in order to grasp the structure and status of the ground around the pillar gate and to provide the directions and design data for preservation and maintenance during reconstruction. The result of electric specific resistance survey shows 50-1300 ohm-m range of general electric specific resistance distribution. Besides, the positions around 1m south of stone pillars, between stone pillar No.3 and 4, and 1m north of stone pillar No.2 and 3 show abnormality of relatively lower electric specific resistance than their surroundings. The abnormality of low electric specific resistance appearing between stone pillar No.3 and 4 shows consistency with the abnormal section appearing from the result of elastic wave reflection survey. The result of a plate loading test shows that allowable bearing force is over $10.70tf/m^2$, and the settlement amount at this time was calculated as 19.635mm. The design load during reconstruction of pillar gates was calculated as $16.37t/m^2$ by applying assumption values, which is far more than the allowable bearing force, so it is judged that a measure to strengthen the foundation ground is necessary.

  • PDF

Estimation and Application of Reliability Values for Strength of Material Following Gamma Distribution (감마분포를 따르는 재료강도의 신뢰도 예측과 응용)

  • Park, Sung-Ho;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.223-230
    • /
    • 2012
  • The strength of brittle material has commonly been characterized by a normal distribution or Weibull distribution, but it may fit the gamma distribution for some material. The use of an extreme value distribution is proper when the largest values of a set of stresses dominate the failure of the material. This paper presents a formula for reliability estimation based on stress-strength interference theory that is applicable when the strength of material is distributed like a gamma distribution and the stress is distributed like an extreme value distribution. We verified the validity of the equation for the reliability estimation by examining the relationships among the factor of safety, the coefficient of variation, and the reliability. The required minimum factor of safety and the highest allowable coefficient of variation of stress can be estimated by choosing an objective reliability and estimating the reliabilities obtained for various factors of safety and coefficients of variation.

Comparison of Design Standards for Seismic Design of Steel Liquid Storage Tanks (강재 액체저장탱크의 내진설계를 위한 설계기준 분석)

  • Bae, Doobyong;Park, Jang Ho;Oh, Chang Kook
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.3
    • /
    • pp.195-202
    • /
    • 2016
  • In this study, it is carried out to analyze the international design standards such as Eurocode 8, API 650, NZSEE and etc for the seismic design of steel liquid storage tanks. From the comparison and analysis, the data for the required parameters and factors are provided for the establishment of Korean seismic design standard for steel liquid storage tanks. The simplified mechanical models have been presented for the seismic design of steel liquid storage tanks in all design standards and the parameters of mechanical models in design standards have similar values. Although the models for the seismic design of steel liquid storage tanks are similar in design standards, design approaches are given differently in accordance with the design methods, allowable stress design or limit state design. Therefore it is not easy to compare seismic forces presented in design standards directly. After comparison of design standards, it is concluded that establishment of Korean design standard for the seismic design of steel liquid storage tanks is necessary.

Verification on the Design Formulas of Apron Length by Scour Analysis at Weir Downstream (보 하류부 세굴 분석을 통한 물받이공 길이 설계 공식 검토)

  • Ko, Dongwoo;Lee, Changhun;Kang, Joongu
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.2
    • /
    • pp.83-89
    • /
    • 2020
  • This hydraulic study analyzed the scour effect at fixed downstream weirs based on the changes in the upstream bed slope. The study was performed using six different bed slopes, that is, 0%, 2%, 3%, 4%, 7%, and 10% at 0.117 ㎥/s in all cases. The scour depth, scour length, and scour volume were measured using a broadband laser scanner to quantitatively analyze the scour at the downstream weir. This study also examined the adequacy of the designed apron length by comparatively analyzing the results of the scour experiments and the apron length calculated using conventional design standard formulas. The analysis of the local scour effect at the downstream weir showed that scour length and scour depth increased as the bed slope became steeper. A comparison between the results of the scour experiment and that of the conventional design formulas showed that both formulas of the National Construction Research Institute and the Bligh were distributed within the allowable values when there was no upstream bed slope. However, as the bed slope upstream of the weir gradually increased, the scour lengths of the apron deviated slightly from the values obtained from the conventional design formulas.

A Study for Improved Design Criteria of Composite Pile Joint Location based on Case Analysis (사례 분석을 통한 복합말뚝 이음위치의 설계 기준식 개선 연구)

  • Hwang, Uiseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.21-30
    • /
    • 2019
  • Composite pile, which is composed of the steel pipe pile in which the large horizontal force acts and the PHC pile in which the small horizontal force acts by a special connecting devices, is being commercialized as a base material for civil engineering structures. The core of such a composite pile can be said to be a design criterion for estimating the joint position and stability of the connection device between steel pipe pile and PHC pile. In Korea, there is no precise specification for the location of composite pile joints. In the LH Design Department (Korea Land & Housing Corporation, 2009), "Application of composite pile design and review of design book marking" was made with reference to Road Design Practice Volume 3 (Korea Expressway Corporation, 2001). this is used as a basis of the design of the composite pile. It can not be regarded as a section change of the composite pile, so it has a limitation in application. Therefore, In this study, we propose a design criterion for the location of the section of the composite pile (joint of steel pipe pile and PHC pile) and evaluate the stability and economical efficiency of it by using experimental method and analytical method. Analysis of composite pile design data installed in 79 domestic bridges abutment showed that the stresses, bending moments, and displacements acting on the pile body and connection of the pile were analyzed. Through the redesign process, it was confirmed that the stresses generated in the connecting device occur within the allowable stress values of the connecting device and the PHC pile. In conclusion, the design proposal of composite pile joint location through empirical case study in this study is an improved design method considering both stability and economical efficiency in designing composite pile.

A Study on Load-carrying Capacity Design Criteria of Jack-up Rigs under Environmental Loading Conditions (환경하중을 고려한 Jack-up rig의 내하력 설계 기준에 대한 연구)

  • Park, Joo Shin;Ha, Yeon Chul;Seo, Jung Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.103-113
    • /
    • 2020
  • Jack-up drilling rigs are widely used in the offshore oil and gas exploration industry. Although originally designed for use in shallow waters, trends in the energy industry have led to a growing demand for their use in deep sea and harsh environmental conditions. To extend the operating range of jack-up units, their design must be based on reliable analysis while eliminating excessive conservatism. In current industrial practice, jack-up drilling rigs are designed using the working(or allowable) stress design (WSD) method. Recently, classifications have been developed for specific regulations based on the load and resistance factor design (LRFD) method, which emphasises the reliability of the methods. This statistical method utilises the concept of limit state design and uses factored loads and resistance factors to account for uncertainly in the loads and computed strength of the leg components in a jack-up drilling rig. The key differences between the LRFD method and the WSD method must be identified to enable appropriate use of the LRFD method for designing jack-up rigs. Therefore, the aim of this study is to compare and quantitatively investigate the differences between actual jack-up lattice leg structures, which are designed by the WSD and LRFD methods, and subject to different environmental load-to-dead-load ratios, thereby delineating the load-to-capacity ratios of rigs designed using theses methods under these different enviromental conditions. The comparative results are significantly advantageous in the leg design of jack-up rigs, and determine that the jack-up rigs designed using the WSD and LRFD methods with UC values differ by approximately 31 % with respect to the API-RP code basis. It can be observed that the LRFD design method is more advantageous to structure optimization compared to the WSD method.

Investigation of Maximum External Pressure of Helically Coiled Steam Generator Tubes with Axial and Circumferential Through-Wall Cracks (축방향 및 원주방향 관통균열이 존재하는 나선형 전열관의 파손 외압 평가)

  • Lim, Eun-Mo;Huh, Nam-Su;Choi, Shin-Beom;Yu, Je-Yong;Kim, Ji-Ho;Choi, Suhn
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.573-579
    • /
    • 2013
  • Once-through helically coiled steam generator tubes subjected to external pressure are of interest because of their application to advanced small- and medium-sized integral reactors, in which a primary coolant with a relatively higher pressure flows outside the tubes, while secondary water with a relatively lower pressure flows inside the tubes. Another notable point is that the values of the mean radius to thickness ratio of these steam generator tubes are very small, which means that a thick-walled cylinder is employed for these steam generator tubes. In the present paper, the maximum allowable pressure of helically coiled and thick-walled steam generator tubes with through-wall cracks under external pressure is investigated based on a detailed nonlinear three-dimensional finite element analysis. In terms of the crack orientation, either circumferential or axial through-wall cracks are considered. In particular, in order to quantify the effect of the crack location on the maximum external pressure, these cracks are assumed to be located in the intrados, extrados, and flank of helically coiled cylinders. Moreover, an evaluation is also made of how the maximum external pressure is affected by the ovality, which might be inherently induced during the tube coiling process used to fabricate the helically coiled steam generator tubes.

The effects of Design Initial Condition on Renewal of Railway Existing Curves (철도 평면선형 개량시 설계초기조건이 미치는 영향)

  • Um, Ju-Hwan;Choi, Il-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2906-2910
    • /
    • 2015
  • The alignment modifications after completion of railway construction entail a lot of efforts and time as well as high additional costs. In the process of renewal of the existing railway alignment to offer higher-speed services, the effect of initial design parameters(e.g., intersection angle) on determination of allowable degree of improvement of horizontal curves under consideration of economic efficiency is investigated in this study. From the analysis results, in the case that there are obstacles at the tangent line, it was found that the larger angle of intersection has a significant effect on the permissible zone. In addition, as the intersection angle is increased, the permissible values of maximum curve radius and the length of transition curve becomes smaller and longer, respectively. It is expected that this study can contribute to the efficient and accurate prediction of the permissible zone according to the locations of obstacles and the size of intersection angle as well as improvement in the railway alignment without any additional costs.

Static Test and Suggestion of Shear Strength Equation on Shear Studs in Composite Bridge (합성형 교량에서 전단연결재에 대한 정적실험 및 강도식의 제안)

  • Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • In this study, to investigate the shear connection material for the composite of steel plate and bottom plate, design standards and research cases for shear connectors in various countries around the world were analyzed and shear tests were performed on the Push-out specimens with a shear connection, which transmits the horizontal shear force developed on the contact surface between the steel plate and the concrete slab due to various vertical loads acting on the bridge deck. Through Push-out tests of shear studs, of which FRP bar instead reinforcement is placed, the shear stud evaluation formula of the steel strap bottom plate was suggested. The suggested equation suggested in this study has the safety factor of approximately three times compared to allowable strength of highway bridge design criteria. In addition, compared to existing DIN standards and Viest assessment equation, the results showed similar values(approximately, 5% error).