• Title/Summary/Keyword: Allowable capacity

Search Result 317, Processing Time 0.023 seconds

Effect of Density Variation of High Tenacity PET Interlace Yarn on the Physical Properties of Pack Style Shock Energy Absorber (고강력 PET Interlace Yarn 밀도변화가 Pack Style Shock Energy Absorber의 물성에 미치는 영향)

  • Cho, Jin Won;Kwon, Sang Jun;Choe, Jong Deok;Kim, Sang Tae;Ji, Byung Chul;Yang, Seong Baek;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.27 no.2
    • /
    • pp.132-141
    • /
    • 2015
  • Fall-arrest systems(maximum arrest force and allowable free-fall) have been widely applied to provide a safe stop during fall incidents for various industrial activities. Fabric structure affects on the mechanical properties of shock energy absorber. The object of this study is to perform the basic research for the evaluation of the capacity of fall arrest energy absorber in relation to the different interlace yarn density. In this work, pack style energy absorber was prepared by weaving 10 types(Interlace yarn density used high tenacity PET 1000D : 60, 59, 58, 57, 56, 55, 54, 53, 52, 51). The paper presents the results of theoretical investigations of the performance of adjustable absorber during fall arrest. Dynamic load tests based on the EU fall protection equipment standard(CE : EN355:2002) were conducted. Results showed that the maximum arrest force by dynamic load test of energy absorber was satisfied with global standard(below 6,000N). Also, Maximum allowable free-fall of energy absorber showed below 1.75m.

Large deformation modeling of flexible manipulators to determine allowable load

  • Esfandiar, Habib;Korayem, Moharam H.;Haghpanahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.619-629
    • /
    • 2017
  • This paper focuses on the study of complete dynamic modeling and maximum dynamic load carrying capacity computation of N-flexible links and N-flexible joints mobile manipulator undergoing large deformation. Nonlinear dynamic analysis relies on the Timoshenko theory of beams. In order to model the system completely and precisely, structural and joint flexibility, nonlinear strain-displacement relationship, payload, and non-holonomic constraints will be considered to. A finite element solution method based on mixed method is applied to model the shear deformation. This procedure is considerably more involved than displacement based element and shear deformation can be readily included without inducing the shear locking in the element. Another goal of this paper is to present a computational procedure for determination of the maximum dynamic load of geometrically nonlinear manipulators with structural and joint flexibility. An effective measure named as Moment-Height Stability (MHS) measure is applied to consider the dynamic stability of a wheeled mobile manipulator. Simulations are performed for mobile base manipulator with two flexible links and joints. The results represent that dynamic stability constraint is sensitive when calculating the maximum carrying load. Furthermore, by changing the trajectory of end effector, allowable load also changes. The effect of torsional spring parameter on the joint deformation is investigated in a parametric sensitivity study. The findings show that, by the increase of torsional stiffness, the behavior of system approaches to a system with rigid joints and allowable load of robot is also enhanced. A comparison is also made between the results obtained from small and large deformation models. Fluctuation range in obtained figures for angular displacement of links and end effector path is bigger for large deformation model. Experimental results are also provided to validate the theoretical model and these have good agreement with the simulated results.

Analysis of Nonlinear Behavior and Reliability of PSSC Composite Girder Bridge (PSSC 합성거더 교량의 비선형 거동 분석 및 신뢰도 해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.158-166
    • /
    • 2008
  • Member force, strain and stress distribution of a section are obtained for prestressed steel and concrete(PSSC) composite bridge subjected to dead and live load in order to interpret the effect of prestressing and deformation of tendon. The stress and strain distribution and moment capacity are obtained for both noncomposite and composite section and for allowable stress limit state, yield limit state and strength limit state. Reliability analysis is conducted after assuming limit states for deflection, stress and flexural strength. Comparing that the reliability index for stress is near 0 for example section which is designed to satisfy the allowable stress exactly, the reliability indexes for deflection and flexural strength are high. Reliability of PSSC girder which is designed based on allowable stress of bridge design code is high for deflection and flexural strength.

Analysis of Prestress Effect and Reliability of PSSC Composite Girder Bridge (PSSC 합성거더 교량의 프리스트레스 효과 및 신뢰도 해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.214-224
    • /
    • 2008
  • Member force, strain and stress distribution of a section are obtained for optimized standard 25m~45m PSSC composite bridge subjected to dead and live load in order to interpret the effect of prestressing and deformation of tendon. The stress and strain distribution and moment capacity are obtained for both noncomposite and composite section and for allowable stress limit state, yield limit state and strength limit state. Reliability analysis is conducted after assuming limit states for stress and flexural strength. The reliability index for standard PSSC composite bridge which is designed to satisfy the allowable stress for flexural strength are higher than 3.5 which is required reliability indexes on American code for LRFD. Reliability of PSSC girder which is designed based on allowable stress of bridge design code is high for flexural strength.

Evaluation of performance of piled-raft foundations on soft clay: A case study

  • Khanmohammadi, Mohammadreza;Fakharian, Kazem
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2018
  • Applicability of constructing piled raft foundations on soft clay has been given attention in recent years. Lack of sufficient stiffness for soil and thus excessive settlements to allow higher contribution of piles is the major concern in this regard. This paper presents a numerical investigation of performance of piled-raft foundations on soft clay with focusing on a case study. A 3D FEM numerical model is developed using ABAQUS. The model was calibrated by comparing physical and numerical modeling results of other researchers. Then the possibility of using piled-raft system in construction of foundation for a water storage tank in Sarbandar, Iran is assessed. Soil strength parameters in the numerical model were calibrated using the instrumentation data of a heavily instrumented preloading project at the construction site. The results indicate that choosing the proper combination of length and spacing for piles can lead to acceptable differential and total settlements while a high percentage of total bearing capacity of piles can be mobilized, which is an efficient solution for the project. Overall, the construction of piled-rafts on soft clays is promising as long as the total settlement of the structure is not imposing restrictions such as the common 25 mm allowable settlement. But instead, if higher allowable settlements are adopted, for example in the case of rigid steel tanks, the method shall be applicable with considerable cost savings.

Development of Design Method of Disconnected Piled Raft Foundation System (기초분리말뚝 공법의 설계기법 개발)

  • Choi, Jung-In;Min, Ki-Hoon;Kim, Sung-Ho;Kwon, Oh-Sung;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.691-699
    • /
    • 2008
  • In the design of a foundation, settlement of the foundation may exceed allowable design criteria even with a competent bearing stratum. In such a case, a piled-raft foundation system may be adopted using piles as settlement reducing component. In this paper, Disconnected Piled Raft Foundation (DPRF) system, which installs disconnected piles underneath the raft and uses the piles as ground reinforcements, is studied as a cost effective design method against the classical piled-raft foundation system. To this end, large size loading tests were carried out on weathered ground changing area replacement ratio and length of piles. The results indicated that the settlement of the reinforced ground was reduced by 34~87% and the allowable bearing pressure increased by 70% on average from those of the unreinforced original ground, respectively. The correlating formula between the area replacement ratio and the load bearing ratio of piles were derived from the test results and numerical analysis. From the correlation, a design method determining the size and the quantity of the disconnected piles to enhance the bearing capacity of original ground to the desired value was proposed based on one inch settlement criteria.

  • PDF

An Operation Methed for Longitudinal Flow Ventilation System in a Road Tunnel (도로터널에서 종류식 환기 시설의 운전 방안)

  • Kim, T.H.;Hwang, I.J.;Hong, D.H.;Chung, J.S.;Chung, J.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.87-92
    • /
    • 2001
  • In automobile highway tunnels, in order to maintain a suitable environment for drivers and traffic, visibility in the tunnel must be maintained, and the concentrations of poisonous substances including carbon monoxide must be kept at or below allowable levels. For this reason, in long tunnels and tunnels with heavy traffic, ventilation facilities are installed. When the ventilation facilities are run at full capacity, the environment in the tunnel is obviously adequately maintained, but this consumes a great deal of electric power. Consequently, a central problem in highway tunnel ventilation control systems is to keep the pollution concentration at or below the allowable level, and thus provide a safe environment for traffic, while consuming as little electricity as possible. This paper introduces an operation method of longitudinal flow ventilation systems with jet-fan, dust collector and vertical ducts.

  • PDF

Cooling Cycle for Energy Saving (에너지 절약용 냉방사이클)

  • Lee, Hung Joo;Kim, Yong Ku
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.2
    • /
    • pp.116-127
    • /
    • 1989
  • Research on reheating cooling cycle and its practical application have been made to prevent unequalized distribution of temperature and humidity of room due to lack of supply air volume and dewdrops on supply diffusers to be taken place as a result of lower temperature of supply air than that of dew point of room air in cooling cycle of constant air volume, single duct, single zone and draw-through fan type. In view of the fact that human body is insensitive to humidity, it is possible not only to construct the complete non-reheating cooling cycle by increasing the humidity point allowable with the deduction of occupant's sense of pleasantness minimizing, but also to get cooling cycle decreasing the reheating quantity if the humidity exceeds the point allowable. In addition, it is possible to save maximum 8% in electric energy for cooling in cooling system by constructing non-reheating cooling cycle instead of reheating cooling cycle and by increasing the relative humidity of room from 50% to 65% in case efficiency and air pressure of cooling system are low. It is also possible to get an optimum cooling cycle by determining the room humidity in consideration of pleasantness of occupants and conservation rate of electric energy if the cooling capacity, efficiency and total pressure of cooling equipment are fixed.

  • PDF

Modification of Bearing Capacity Formula Considering Seam Tensile Strength of Geotextile in Soft Ground (연약지반에 포설된 Geotextile 봉합인장강도를 고려한 지지력 수정방정식)

  • Kim, Sun-Hak;Chae, Yu-Mi;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.59-67
    • /
    • 2019
  • With the increasing use of geotextile mats in dredging and reclaiming work and coastal construction, the assessment of bearing capacity in soft ground has become an important evaluation index for negligent accidents. The review of the allowable bearing capacity of soft ground consisting of inhomogeneous layers by laying geotextile mats and sand mat layers for soft ground improvement is generally compared with the equation of Meyerhof (1974) and Yamanouchi (1985). Mayerhof formula results in economic loss due to underestimation of bearing capacity, and Yamanouchi (1985) formula does not take into account negligent accidents for punching shear failure, so rather high bearing capacity is evaluated. It is considered that economic feasibility and stability will be ensured by proposing a modified formula to calculate the appropriate bearing capacity by applying the seam tensile strength of the geotextile mat to the design standard of soft ground improvement.

A Study on the Application of Micro Hydro Power Generator at the Water Treatment Plant (정수장 마이크로 소수력 발전기 적용에 대한 연구)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Kim, Il-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.67-72
    • /
    • 2014
  • Inflow or outflow from the water treatment plant and the sewage water has potential energy. If this potential energy can be converted into electrical energy by water turbine generator, it can help to save energy because of the high capacity utilization. So recently, micro hydro power plant is reviewed in the water treatment facility. If generation capacity is low, induction generator is primarily used. If output capacity is low, generated power is supplied to the inside load. Induction generator can cause voltage drop by the inrush current at a start-up and requires reactive power for magnetization. In this study, we analyzed the flow of power and voltage variation against inrush current that occurs when the induction generator starts under the terms that loads of linear and non-linear of the water purification plant are used. Analysis results are that the voltage drop is within an allowable range and the power factor is slightly reduced by the need of reactive power.