• Title/Summary/Keyword: Allowable Stress Design

Search Result 351, Processing Time 0.028 seconds

Safety Evaluation Method of Transmission Tower Subjected to Special Load Case According to Broken Wires (전력선 단선으로 인한 이상시 송전철탑의 안전성 평가방법)

  • Jin, Seok Won;Kim, Jong Min;Park, Jong Sup;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.131-149
    • /
    • 2008
  • A transmission tower was designed according to general and special load cases based on KEPCO Design Specifications. The special load case such as unbalanced load a cording to some broken wires has not been considered significantly. Therefore, this paper presents investigations on the stability and safety of main post members subjected to unbalanced load and design wind load. In this study, all cases totally considered. From the finite element analyses using LUSAS program, the stresses on the tower subjected to unbalanced load and design wind load were very high in comparison to the allowable stresses of the steel post member that was used. Some of the post member had higher stresses than the yield stress of the steel member. This paper also shows an example to improve the capacity of the post members using increased cross-section members. Based on the analyses results, when investigating the safety of the transmission tower, one must consider thenew design philosophy including ultimate strength of the member and reliability of the special loading cases.

Optimal Design of Overtopping Wave Energy Converter Substructure based on Smoothed Particle Hydrodynamics and Structural Analysis (SPH 및 구조해석에 기반한 월파수류형 파력발전기 하부구조물 최적 설계)

  • Sung-Hwan An;Jong-Hyun Lee;Geun-Gon Kim;Dong-hoon Kang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.992-1001
    • /
    • 2023
  • OWEC (Overtopping Wave Energy Converter) is a wave power generation system using the wave overtopping. The performance and safety of the OWEC are affected by wave characteristics, such as wave height, period. To mitigate this issue, optimal OWEC designs based on wave characteristics must be investigated. In this study, the environmental conditions along the Ulleungdo coast were used. The hydraulic efficiency of the OWEC was calculated using SPH (Smoothed Particle Hydrodynamics) by comparing 4 models that changed the substructure. As a result, it was possible to change the substructure. Through design optimization, a new truss-type structure, which is a substructure capable of carrying the design load, was proposed. Through a case study using member diameter and thickness as design variables, structural safety was secured under allowable stress conditions. Considering wave load, the natural frequency of the proposed structure was compared with the wave period of the relevant sea area. Harmonic response analysis was performed using wave with a 1-year return period as the load. The proposed substructure had a reduced response magnitude at the same exciting force, and achieved weight reduction of more than 32%.

Evaluation of Structural Stability of a Simple-typed Cultivation Facility for Growing Pleurotus ostreatus (간이 느타리재배사의 구조 안전성 평가)

  • Yum, Sung-Hyun;Yun, Nam-Kyu;Kim, Chul-Soo
    • Journal of Bio-Environment Control
    • /
    • v.17 no.3
    • /
    • pp.181-187
    • /
    • 2008
  • The structural stability of a simple-typed cultivation facility with a width of 5.6 m for growing Pleurotus ostreatus was analyzed by modeling the facility as three-dimensional steel frames. The computation was done by using the finite element analysis program, ANSYS and the criterion of determining structural stability was based on the allowable stress design (ASD). The computational results showed that the structure with a straight-typed bed column was more stable than those with other types of bed columns against snow depth but there was little difference against wind velocity. As results, the interval of rafter had a more influence on safety wind velocity than that of bed column, while the interval of bed column was more important to safety snow depth. Finally the bed column against buckling was stable in all cases considered in this paper.

A Study on Settlement Characteristics of Earthwork Subgrade with Lowering the Groundwater in High-speed Railway (지하수위 저하에 따른 고속철도 토공노반 침하특성에 관한 연구)

  • Kim, Young-Ha;Eum, Ki-Young;Han, Sang-Jae;Park, Yong-Gul;Jung, Jae-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.67-74
    • /
    • 2015
  • Unlike the primary consolidation settlement, the settlement of ground water lowering is not considered separately because of relatively small residual settlement. But the allowed residual settlement (30 mm) of the concrete track in the high-speed railway may be exceeded due to unexpected excessive ground water lowering. This study analyzed the effect of the settlement according to the ground water level change using finite element analysis of stress-pore pressure coupling model, and compared the analysis results with the measured data. As a result, the range of elasticity modulus satisfying the allowable settlement was proposed, and it is suggested that settlement due to ground water level changes should be reflected in the design.

Estimation about Local Strength using FE-Analysis for Steel Yacht (유한요소해석을 이용한 강선요트의 국부강도 평가)

  • Park Joo-Shin;Ko Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.11 no.2 s.23
    • /
    • pp.77-82
    • /
    • 2005
  • Previously sailing yachts or leisure yachts were mainly made from FRP(Fiber glass reinforced plastic) in the small shipbuilding, but recently there is a trend to replace it for steel or aluminum to substitute FRP for environmental friendly materials. Although It have to need a many checked item in case of hull girder strength and transverse strength normally evaluate base on calculation of class guideline so called direct calculation method. Otherwise. this method of initial structural design considered enough for safety margin on the structure. But, case of small craft must consider for evaluating local strength through rational method. In this paper, check the bow structure members for satisfying results base on allowable stress criterion of damaged bow structure by dynamic load due to slamming and bottom impact load due to pitching motion through finite element analysis. and investigate engine bed structure considering engine weight load and transverse wave load.

  • PDF

Optimization of cables size and prestressing force for a single pylon cable-stayed bridge with Jaya algorithm

  • ATMACA, Barbaros;DEDE, Tayfun;GRZYWINSKI, Maksym
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.853-862
    • /
    • 2020
  • In recent years, due to the many advantages cable-stayed bridges have often constructed in medium and long span. These advantages can be listed as an aesthetically pleasing appearance, economic and easy construction, etc. The main structural elements of cable-stayed bridges are listed as deck, pylon, cables and foundation. Perhaps one of the most vital and expensive of these structural elements is stay-cables. Stay-cables ensure the allowable displacement and distribution of bending moments along the bridge deck with prestressing force. Therefore the optimum design of the stay-cables and prestressing force are very important in achieving the performance expected from the cable-stayed bridges. This paper aims to obtain the stay-cables size and prestressing force optimization of the cable-stayed bridge. For this purpose, single pylon and fan type cable configuration Manavgat Cable-Stayed Bridge was selected as an example. The three dimensional (3D) finite element model (FEM) of the bridge was created with SAP2000. Analysis of the 3D FEM of the bridge was conducted under the different combined effects of the self-weight of the structural element, prestressing force of stay-cable and live load. Stay-cable stress and deck displacement were taken into account as constraints for the optimization problem. To optimize this existing bridge a metaheuristic algorithm named Jaya was used in the optimization process. 3D FEM of the selected bridge was repeatedly analyzed by using Open Applicable Programming Interface (OAPI) properties of SAP2000. To carry out the optimization process the developed program which integrates the Jaya algorithm and the required codes for calling SAP2000 is coded in MATLAB. At the end of the study, the total weight of the stay-cables was reduced more than 40% according to existing stay cables under loads taken into account.

Probability-Based WSD Code for Reinforced Concrete (확률이론(確率理論)에 기초(基礎)한 철근(鐵筋)콘크리트 허용응력설계규준(許容應力設計規準))

  • Cho, Ryo Nam;Shin, Jae Chul;Chun, Chai Myung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.61-68
    • /
    • 1986
  • This paper presents a method for developing a probability-based working stress design code for reinforced concrete. Reliability of reinforced concrete structural members is evaluated by using an advanced second moment reliability method, and then, a practical method for code calibration is shown in this paper. The target reliability indices for various structural elements are determined by considering the results of the numerical studies on the safety of the structures designed by the current code, and by reflecting the construction practice. A set of allowable stresses and safety factors for reinforced concrete is proposed as a possible substitute for the current safety provisions, based on the rational target reliability indices.

  • PDF

Optimal Configuration of the Truss Structures by Using Decomposition Method of Three-Phases (3단계(段階) 분할기법(分割技法)에 의한 평면(平面)트러스 구조물(構造物)의 형상(形狀) 최적화(最適化)에 관한 연구(硏究))

  • Lee, Gyu Won;Song, Gi Beom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.39-55
    • /
    • 1992
  • In this research, a Three Level Decomposition technique has been developed for configuration design optimization of truss structures. In the first level, as design variables, behavior variables are used and the strain energy has been treated as the cost function to be maximized so that the truss structure can absorb maximum energy. For design constraint of the optimal design problem, allowable stress, buckling stress, and displacement under multi-loading conditions are considered. In the second level, design problem is formulated using the cross-sectional area as the design variable and the weight of the truss structure as the cost function. As for the design constraint, the equilibrium equation with the optimal displacement obtained in the first level is used. In the third level, the nodal point coordinates of the truss structure are used as coordinating variable and the weight has been taken as the cost function. An advantage of the Three Level Decomposition technique is that the first and second level design problems are simple because they are linear programming problems. Moreover, the method is efficient because it is not necessary to carry out time consuming structural analysis and techniques for sensitivity analysis during the design optimization process. By treating the nodal point coordinates as design variables, the third level becomes unconstrained optimal design problems which is easier to solve. Moreover, by using different convergence criteria at each level of design problem, improved convergence can be obtained. The proposed technique has been tested using four different truss structures to yield almost identical optimum designs in the literature with efficient convergence rate regardless of constraint types and configuration of truss structures.

  • PDF

The structural analysis and design methods considering joint bursting in the segment lining (조인트 버스팅을 고려한 세그먼트 라이닝 구조해석 및 설계방법)

  • Kim, Hong-Moon;Kim, Hyun-Su;Jung, Hyuk-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1125-1146
    • /
    • 2018
  • Segment lining applied to the TBM tunnel is mainly made of concrete, and it requires sufficient structural capacity to resist loads received during the construction and also after the completion. When segment lining is design to the Limit State Design, both Ultimate Limit State (ULS) and Service Limit State (SLS) should be met for the possible load cases that covers both permanent and temporary load cases - such as load applied by TBM. When design segment lining, it is important to check structural capacity at the joints as both temporary and permanent loads are always transferred through the segment joints, and sometimes the load applied to the joint is high enough to damage the segment - so called bursting failure. According to the various design guides from UK (PAS 8810, 2016), compression stress at the joint surface can generate bursting failure of the segment. This is normally from the TBM's jacking force applied at the circumferential joint, and the lining's hoop thrust generated from the permanent loads applied at the radial joint. Therefore, precast concrete segment lining's joints shall be designed to have sufficient structural capacity to resist bursting stresses generated by the TBM's jacking force and by the hoop thrust. In this study, bursting stress at the segment joints are calculated, and the joint's structural capacity was assessed using Leonhardt (1964) and FEM analysis for three different design cases. For those three analysis cases, hoop thrust at the radial joint was calculated with the application of the most widely used limit state design codes Eurocode and AASHTO LRFD (2017). For the circumferential joints bursting design, an assumed TBM jack force was used with considering of the construction tolerance of the segments and the eccentricity of the jack's position. The analysis results show reinforcement is needed as joint bursting stresses exceeds the allowable tensile strength of concrete. This highlights that joint bursting check shall be considered as a mandatory design item in the limit state design of the segment lining.

A Study on the Development of Floor-Fixed Standpipe Sway Brace for Narrow Space (협소공간전용 바닥고정형 입상관 흔들림방지버팀대 개발에 관한 연구)

  • Jin, Se-Young;Choi, Su-Gil;Park, Sang-Min;Yeon, Tae-Young;Kim, Chang-Su;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.47-54
    • /
    • 2020
  • This paper proposes a solution to the problems of constructing and installing sway braces for existing standpipes in narrow spaces and pits. The study develops a floor-fixed sway brace for a narrow space that can support the ground area under horizontal seismic loads (X-axis, Y-axis) as well as vertical seismic loads (Z-axis). The results of structural analysis using SolidWorks simulation showed that the eccentric load was generated in the first design according to the anchored position along the vertical direction, and the problem of exceeding the allowable stress of the material along the horizontal and vertical directions. In the second design model, deformation caused by the eccentric load along the vertical direction, similar to the first design model, did not occur. The maximum strain rate was 0.17%, which is approximately 12.84% less than the first design model (Maximum strain rate of 13.01%). It was confirmed that the structural stability and durability improved. Compressive and tensile load testing of the prototypes showed that all of them meet the performance criteria of the standard.