• Title/Summary/Keyword: All-bond 2

Search Result 793, Processing Time 0.029 seconds

Effect of Epigallocatechin Gallate on shear bond strength of composite resin to bleached enamel: an in vitro study

  • Khamverdi, Zahra;Rezaei-Soufi, Loghman;Kasraei, Shahin;Ronasi, Negin;Rostami, Shiva
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.4
    • /
    • pp.241-247
    • /
    • 2013
  • Objectives: The aim of this study was to determine the effect of epigallocatechin gallate (EGCG) on the shear bond strength of composite resin to bleached enamel. Materials and Methods: Ninety enamel surfaces of maxillary incisors were randomly divided into 9 groups as follows: G1: control (no bleaching); G2: bleaching; G3: bleaching and storage for seven days; G4 - 6: bleaching and application of 600, 800 and 1,000 ${\mu}mol$ of EGCG-containing solution for 10 minutes, respectively; G7 - 9: bleaching and application of 600, 800 and 1,000 ${\mu}mol$ of EGCG-containing solution for 20 minutes, respectively. The specimens were bleached with 30% hydrogen peroxide gel and a composite resin cylinder was bonded on each specimen using a bonding agent. Shear bond strength of the samples were measured in MPa. Data was analyzed using the two-way ANOVA and Tukey HSD tests (${\alpha}$ = 0.05). Results: The maximum and minimum mean shear bond strength values were observed in G1 and G2, respectively. Time and concentration of EGCG showed no significant effects on bond strength of the groups (p > 0.05). Multiple comparison of groups did not reveal any significant differences between the groups except for G2 and all the other groups (p < 0.05). Conclusions: There is a significant decrease in bond strength of composite resin to enamel immediately after bleaching. A delay of one week before bonding and the use of EGCG increased bond strength of composite resin to bleached enamel.

Effect of different chlorhexidine application times on microtensile bond strength to dentin in Class I cavities

  • Kang, Hyun-Jung;Moon, Ho-Jin;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • Objectives: This study evaluated the effect of 2% chlorhexidine digluconate (CHX) with different application times on microtensile bonds strength (MTBS) to dentin in class I cavities and intended to search for ideal application time for a simplified bonding protocol. Materials and Methods: Flat dentinal surfaces with class I cavities ($4mm{\times}4mm{\times}2mm$) in 40 molar teeth were bonded with etch-and-rinse adhesive system, Adper Single Bond 2 (3M ESPE) after: (1) etching only as a control group; (2) etching + CHX 5 sec + rinsing; (3) etching + CHX 15 sec + rinsing; (4) etching + CHX 30 sec + rinsing; and (5) etching + CHX 60 sec + rinsing. Resin composite was builtup with Z-250 (3M ESPE) using a bulk method and polymerized for 40 sec. For each condition, half of the specimens were immediately submitted to MTBS test and the rest of them were assigned to thermocycling of 10,000 cycles between $5^{\circ}C$ and $55^{\circ}C$ before testing. The data were analyzed using two-way ANOVA, at a significance level of 95%. Results: There was no significant difference in bond strength between CHX pretreated group and control group at the immediate testing period. After thermocycling, all groups showed reduced bond strength irrespective of the CHX use. However, groups treated with CHX maintained significantly higher MTBS than control group (p < 0.05). In addition, CHX application time did not have any significant influence on the bond strength among groups treated with CHX. Conclusion: Application of 2% CHX for a short time period (5 sec) after etching with 37% phosphoric acid may be sufficient to preserve dentin bond strength.

EFFECTS OF SURFACE TREATMENTS AND STORAGE CONDITIONS ON TARGIS/DENTIN BOND STRENGTH (Targis 표면처리가 상아질과의 전단결합강도에 미치는 영향)

  • Oh, Young-Taek;Hwang, Su-Jin;Lee, Se-Joon;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.2
    • /
    • pp.262-271
    • /
    • 2000
  • The purpose of this study was to estimate shear bond strength according to difference in Targis surface treatment and storage condition. 140 non-carious extracted human molars and Targis D210(Ivoclar, Liechtenstein) were used in the present study and were divided into 7 experimental groups respectively according to surface treatment of Targis. Group 1 ; No treatment, Group 2 ; $50{\mu}m$ aluminium oxide blasting, Group 3 ; 4% HF etching for 3 minutes, Group 4 ; 4% HF etching after blasting, Group 5 ; silane treatment after blasting, Group 6 ; silane treatment after 4% HF etching, Group 7 ; silane treatment after blasting and 4% HF etching. In Each group, one half of 20 specimens was stored in distilled water at $37^{\circ}C$ for 24 hours and the other half was stored at atmosphere for 24 hours respectively. Dentin surface was etched with 10% $H_3PO_4$ for 15 seconds and luting cement(Variolink II, Vivadent, Liechtenstein) was applied by manufacturer's recommendation. Shear bond strength for each group was then measured. To examine the failure patterns after shear bond test and to observe the change after surface treatment of Targis. Specimens were fabricated and observed under the SEM. Statistical analysis was performed by One Way ANOVA test and t-test. The results were as follows ; 1. The shear bond strength of the groups stored in water significantly lower than that of groups stored at atmosphere (P<0.05). 2. There was no significant difference in shear bond strength in groups stored in water (P>0.05). 3. The shear bond strength without surface treatment of Targis were lowest among all experimental groups in atmosphere condition(P<0.05). 4. There was no significant difference in bond strength between groups using the silane or not(P>0.05). 5. The groups treated by blasting, hydrofluoric acid and silane sequentially showed highest bond strength than that of other groups in atmosphere condition, but there was no significant difference(P>0.05). 6 The proportions of the specimens showing the mixed fracture failure were 20% in HF etching group and blasting + HF group, 40% in blasting + HF + silane group in atmosphere condition. All the specimens stored in water showed adhesive fracture failure.

  • PDF

EFFECT OF SURFACE TREATMENT METHODS ON THE SHEAR BOND STRENGTH OF RESIN CEMENT TO ZIRCONIA CERAMIC

  • Lee, Ho-Jeong;Ryu, Jae-Jun;Shin, Sang-Wan;Sub, Kyu-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.743-752
    • /
    • 2007
  • Statement of problem. The aims of the study were to evaluate the effect of current surface conditioning methods on the bond strength of a resin composite luting cement bonded to ceramic surfaces and to identify the optimum cement type. Material and methods. The sixty zirconia ceramic specimens(10 per group) with EVEREST milling machine and 60 tooth block were made. The zirconia ceramic surface was divided into two groups according to surface treatment: (1) airborne abrasion with $110{\mu}m$ aluminum oxide particles; (2) Rocatec system, tribochemical silica coating. The zirconia ceramic specimens were cemented to tooth block using resin cements. The tested resin cements were Rely X ARC, Panavia F and Superbond C&B. Each specimen was mount in a jig of the universal testing machine for shear strength. The results were subjected to 2-way ANOVA and Post hoc tests was performed using Tukey, Scheffe, and Bonferroni test. Results. The mean value of shear bond strength(MPa) were as follows: $$RelyXARC(+Al_2O_3),5.35{\pm}1.69$$; $$RelyXARC(+Rocatec),8.50{\pm}2.13$$; $$PanaviaF(+Al_2O_3),9.58{\pm}1.13$$; $$PanaviaF(+Rocatec),12.98{\pm}1.71$$; $$SuperbondC&B(+Al_2O_3)8.27{\pm}2.04$$; $$SuperbondC&B(+Rocatec),14.46{\pm}2.39$$. There was a significant increase in the shear bond strength when the ceramic surface was subjected to the tribochemical treatment(Rocatec 3M) in all cement groups(P<0.05). Bonding strengths of cements applied to samples treated with $Al_2O_3$ were compared; Rely X ARC showed the lowest values, whereas Panavia F cement showed higher value than that of Superbond C&B group with no statistical significance. When the bond strength of cements with of Rocatec treatment was compared, Rely X ARC showed lowest values. Overall, it was apparent that tribochemical treated Super-Bond possessed higher mean bond strength (14.46MPa; P<0.05) than that of Panavia F cement group with no significance. Conclusions. Silica coating followed silanization(Rocatec treatment) increase the bond strength between resin cement and zirconia ceramic. Panavia F containing phosphate monomer and Superbond C&B comprised of 4-META tend to bond chemically with zirconia ceramic, thus demonstrating higher bond strength compared to BisGMA resin cement. Superbond C&B has shown to have highest value of bonding strength to zirconia ceramic after Rocatec treatment compared to other cement.

A STUDY OF THE SHEAR BOND STRENGTH OF METAL BRACKETS AND CERAMIC BRACKETS AND THE CONDITION AFTER DEBONDING (Metal bracket과 ceramic bracket의 전단 결합 강도와 debonding 상태에 관한 연구)

  • Yoon, Jung-Jin;Ryu, Young-Kyu
    • The korean journal of orthodontics
    • /
    • v.22 no.2 s.37
    • /
    • pp.327-343
    • /
    • 1992
  • Metal brackets and ceramic brackets were bonded to natural teeth, porcelain crowns and gold crowns After stored in artificial saliva solution for 72 hours at $37^{\circ}C$, the shear bond strengths were measured by Instron and compared with them, the bonding sites and bracket bases were examined by scanning electron microscope and light optical stereomicroscope. The results were as follows: 1. The shear bond strengths of the group which metal brackets were bonded to natural teeth and the groups which ceramic brackets were bonded to natural teeth and porcelain crowns were comparable to each other, the shear bond strength of the group which metal brackets were bonded to gold crowns was significantly low. 2. The bond failed predominantly at the bracket base/adhesive interface with the bulk of adhesive remaining on enamel in the group which metal brackets were bonded to natural teeth. 3. The bond failed consistently at the crown/adhesive interface with all of adhesive remaining on the bracket babes in the group which metal brackets were bonded to gold crowns. 4. The bond failed at the enamel or crown/adhesive interface with the bulk of adhesive remaining on the bracket bases in the groups which cramic brackets were bonded to natural teeth and porcelain crowns. 5. The shear bond strengths of the groups which ceramic brackets were bonded to porcelain crowns were not affected by etching time.

  • PDF

A STUDY ON THE INFLUENCE OF PRETREATMENT ON THE BOND STRENGTHS OF SOME PIT AND FISSURE SEALANTS (수종의 치면열구 전색재의 전처리가 결합강도에 미치는 영향)

  • Min, Yun-Kyung;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.2
    • /
    • pp.277-284
    • /
    • 1998
  • For the purpose of comparing the shear bond strengths of pit and fissure sealants, and finding out the more efficient method of tooth surface treatment when the etched surface is contaminaed by saliva or moisture, an experiment was performed on 3 types of pit and fissure sealants. 120 extracted human molars were divided into 3 groups, each of which was composed of 40 specimens sealed with Helioseal, Teethmate-F and Fuji III respectively. And each groups was again divided into 4 subgroups according to tooth surface treatment. The shear bond strengths of each groups and subgroup was measured and statistically analyzed. The results obtained were as follows : 1. Shear bond strengths of nonfluoridated resin sealant, Helioseal were shown to be higher than those of fluoridated resin sealant, Teethmate-F, but, not significantly different. 2. Shear bond strengths of GI sealant, Fuji III were to be markedly lower than those of two resin sealants. 3. When there is moisture contamination, applying primer under sealant(Group IV) results in a significantly stronger bond strength of sealant to enamel than when using sealant alone(Group II) in case of all sealants. 4. When there is no moisture contamination, using primer under sealant (Group III) results in bond strength equivalent to bond strength on using sealant alone (Group I). 5. Based on the results above, it was demonstrated that the bond of sealant to tooth surface is greatly affected by saliva contamination and that the complete tooth isolation method should be fully emphasized. The application of primer is recommended when performing sealant under the environment very susceptible to saliva contamination.

  • PDF

BOND STRENGTH OF BONDED AMALGAM USING DENIAL ADHESIVES (치과용 접착제를 사용한 접착 아말감의 결합 강도)

  • Kam, Dong-Hoon;Lee, Sang-Dae;Hahn, Se-Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.2
    • /
    • pp.284-295
    • /
    • 1999
  • The purpose of this study was to measure and analyze the bond strength of bonded amalgam using dental adhesives and to compare this with light-curing composite resin. Sections 8mm in diameter were punched out from the labial surface of bovine anterior teeth. These were embedded in clear acrylic resin blocks with labial surface facing out. 55 specimens were made for enamel and dentin each. After dividing these into 5 groups, group 1: Superbond C&B, group 2: Panavia 21, group 3: All-Bond 2, group 4: Fuji I Glass Ionomer Luting Cement, group 5: Scotchbond Multi-Purpose(Restorative Z-100), molds with holes of 6.3mm in diameter and 1.5mm in depth were placed over the specimens. The exposed tooth surfaces were treated with adhesives and the molds were filled with amalgam. In group 5, the mold was filled with composite resin and light-cured for 40 seconds. The author measured all specimens for bond strength 24 hours after amalgam filing and analyzed fracture surfaces. The following results were obtained: 1. Among the dentin groups, groups 1, 2 and 4 showed significantly lower bond strength compared with group 5(P<0.05). 2. Among the enamel groups, group 4 showed significantly lower bond strength compared with group 5(P<0.05). 3. In group 2, 2D showed significantly lower bond strength compared with group 2E(P<0.05). Other adhesives showed no such differences in bond strength between dentin and enamel(P>0.05). 4. Cohesive failure was observed in groups 1E and 5D, while mixed failure was seen in groups 1 and 5. Only adhesive failures were noted in groups 2, 3, 4.

  • PDF

A STUDY ON THE SHEAR BOND STRENGTH OF LIGHT CURED GLASS IONOMER CEMENTS TO CONTAMINATED DENTIN (상아질 표면상태에 따른 광중합형 글래스아이오노머 시멘트의 전단결합강도에 관한 연구)

  • Kim, Kyoung-Hwa;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.609-621
    • /
    • 1997
  • The purpose of this study was to evaluate the shear bond strength of three light-cured glass ionomer cements to blood contaminated bovine dentin. The materials used in this study were Fuji II LC, Dyract and Variglass VLC. The dentin conditioners were 10% polyacrylic acid, 10% maleic acid and 10% phosphoric acid. 180 lower anterior bovine teeth were selected in this study. The teeth were embedded in acrylic resin and were grounded with 320 to 600 grit silicon carbide paper to create a flat dentin surface. The teeth were divided into SIX groups. The experimental procedures in six groups were as follows; Group l(GF) : Samples bonded to dentin surface with Fuji II LC after 10% polyacrylic acid treatment. Group 2(BGF) : Samples bonded to dentin surface with Fuji II LC after 10% polyacrylic acid treatment and blood contamination. Group 3(MD) : Samples bonded to dentin surface with Dyract after 10% maleic acid treatment. Group 4(BMD) : Samples bonded to dentin surface with Dyract after 10% maleic acid treatment and blood contamination. Group 5(PV) : Samples bonded to dentin surface with Variglass VLC after 10% phosphoric acid treatment. Group 6(BPV) : Samples bonded-to dentin surface with Variglass VLC after 10% phosphoric acid treatment and blood contamination. Group 1,3 and 5 were classified into the control groups, while group 2,4 and 6 were classified into the experimental groups. Each group contained 30 samples. After 24 hours water storage at $37^{\circ}C$, all smples were subjected to a shear load to fracture at a cross head speed of 1.0 mm/min with Instron universal testing machine(No. 4467). Debonded surfaces were observed under Scanning Electron Microscope(Hitachi S-2300) at 20kvp. The data were evaluated statistically at the 95% confidence level with Student's t-test. The following results obtained; 1. Shear bond strengths were higher in the control groups(1,3,5 group) than in the experimental groups(2,4,6 group). 2. The shear bond strength of group 5(PV) was the highest in the control groups, and the group 5 was significantly higher than the group l(GF) on the shear bond strength. 3. The group 4(BMD) was the highest on the shear bond strength, and the group 2(BGF) was the lowest in the experimental groups. The group 4(BMD) and 6(BPV) showed a significant difference with the group 2 on the shear bond strength. 4. All the groups showed an adhesive-cohesive failure. except the group 2(BGF) showing adhesive failure.

  • PDF

A STUDY ON THE RELATIVE SHEAR BOND STRENGTHS OF SOME ADHESIVE RESTORATIVE MATERIALS TO PRIMARY ENAMEL AND DENTIN (수종 접착성 수복재의 유치 법랑질과 상아질에 대한 상대적 접착력의 비교연구)

  • Kim, Seung-Mee;Kim, Shin;Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.2
    • /
    • pp.237-245
    • /
    • 2000
  • For the purpose of comparing the bond strengths of some tooth adhesive restoration materials on primary enamel and dentin, 4 kinds (7 brands) of restorative materials including a composite resin (Z 100), a conventional glass ionomer cement (Chem-Flex), 2 brands of resin-modified glass ionomer cements (Fuji II LC-I, Vitremer), and 3 brands of compomers(Dyract AP, F2000, Compoglass) were investigated using UTM for measuring the shear bond strengths. Additionally the failure modes were examined by histologically observing the fractured surfaces of each specimen. The following results were obtained. 1. The shear bond strengths of Z 100 to the primary enamel were higher than those of other experimental materials except Fuji II LC-I, which showed significantly higher bond strength than Chem-Flex or Vitremer (P<0.05). 2. The shear bond strengths of Z 100 to the primary dentin were higher than those of other experimental materials except Dyract AP and Fuji II LC-I, both of which showed significantly higher shear strength than Chem-Flex or Vitremer (P<0.05). 3. The shear bond strengths of all restorative materials except Dyract AP showed relatively higher values to enamel surface than to dentin surface. In Dyract AP, the reverse was true significantly. 4. All materials examined showed cohesive failures except some Chem-Flex and Vitremer, which showed adhesive failures.

  • PDF

EFFECTS OF MOISTENING OF ETCHED DENTIN AND ENAMEL SURFACES ON BOND STRENGTH (산 표면처리후 상아질과 법랑질 표면의 습윤이 결합강도에 미치는 영향)

  • Lee, Kwang-Won;Park, Soo-Joung;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.328-341
    • /
    • 1995
  • I. Shear Bond Strength to Air-dried and Remoistened Dentin.. The effect of air-drying and remoistening of acid-conditioned dentin before priming with the primer of All-Bond 2(BISCO. INC., U. S. A.) on shear bond strength(SBS) was investigated. Ninty freshly extracted sound human molars were divided at random into 9 groups of 10 teeth each. SBSs were meaured for acid-conditioned and non-conditioned dentin to which the primer and bonding agent of All-Bond 2 and composite resin(Z-100, 3M Dental Products, U. S. A.) were applied. The following values(Mean${\pm}$ SD, MPa) were obtained for the groups conditioned with 10% phosphoric acid for 15 seconds: Group l(blot dried) $6.7{\pm}4.1$ ; Group 2(10 seconds dried) $16.1{\pm}5.3$ ; Group 3(20 seconds dried) $15.4{\pm}4.8$ ; Group 4(30 seconds dried) $15.2{\pm}6.3$ ; Group 5(10 seconds dried/remoistened) $26.4{\pm}2.6$ ; Group 6(20 seconds dired/remositened) $22.2{\pm}2.7$ ; Group 7(30 seconds dried/remoistened) $21.5{\pm}4.1$. For the non-conditioned groups the values were: Group 8 (blot dried) $13.3{\pm}2.6$ ; Group 9(10 seconds dried) $12.9{\pm}3.5$. The data were analyzed using ANOVA. In the acid-conditioned groups, mean values of SBS for the air-dried specimens(Grps. 2, 3 and 4) and the 20 and 30 seconds dried/remoistened specimens (Grps. 6 and 7) were significantly lower than that of blot dried specimens.(p<0.05) The value for 10 seconds dried/remoistened specimens (Grp. 5), however, was not statistically different compared to that of blot dried specimens.(p>0.05) In the non-conditined groups, there was no statistical difference between blot dried and 10 seconds dried specimens.(p>0.05) The results suggest that the acid-conditioned dentin surface is more vulnerable to dentin bonding when it is air-dried or even remoistened after long period of drying. II. Shear bond stengh to the moistened and primed enamel. The effect of moistening and priming of enamel compared to the air-drying of enamel on the shear bond strength of enamel bonding agent was investigated. The experiment was divided into 4 groups each containing 10 caries-free maxillary incisor teeth. Shear bond strength values were measured for the primed and non-primed enamel to which All-Bond 2 and Z-100 were applied. The following values(MPa) were obtained for the primed groups pretreated with 32 % phosphoric acid for 15 seconds. : Group 1 (10 seconds dried) $29.8{\pm}2.2$ ; Group 2(moistened) $26.8{\pm}5.4$. For the non-primed groups the values were: Group 3(10 seconds dried/primed) $27.6{\pm}5.0$ ; Group 4(mostened/primed) $28.2{\pm}3.5$. The data were subjected to statistical analysis using ANOVA. The results showed that mean shear bond strengths among the experimental groups were not statistically different. (p>0.05) Conclusively, It is suggested that the bonding ability to enamel is not decreased by the moistening and priming of the enamel.

  • PDF