• 제목/요약/키워드: All-Speed Flow

검색결과 292건 처리시간 0.023초

Turbulent properties in a mixed statistically stationary flow

  • Baek, Tae-Sil;Doh, Deog-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권7호
    • /
    • pp.729-736
    • /
    • 2013
  • The turbulent properties in a mixed statistically stationary flow were investigated experimentally by a pseudo stereoscopic PIV. In order to validate the experimental results, the profiles of the turbulent kinetic energy were evaluated with the flow features. A mechanical agitator having 6 blades was installed at the bottom of the mixing tank (D=60cm, H=60cm). The agitator was rotated with 80rpm clockwise and counter-clockwise. For the measurements, three cameras were used and all were synchronized. The images captured by one of the three cameras was used for the measurement of rotational speed, and the images captured by the other two cameras were used to measure three dimensional components of velocity vectors. All vectors captured at the same rotational angle were phase averaged to construct three-dimensional vector fields to reconstruct the spatial distribution of the flow properties. It was seen that the jet scrolling along the tank was the main source of mixing.

준 일차원 Euler 방정식의 전속도 유동해석을 위한 예조건화 수반변수 기법의 개발 (DEVELOPMENT OF A PRECONDITIONED ADJOINT METHOD FOR ALL-SPEED FLOW ANALYSES OF QUASI ONE-DIMENSIONAL EULER EQUATIONS)

  • 이형로;이승수
    • 한국전산유체공학회지
    • /
    • 제20권3호
    • /
    • pp.27-34
    • /
    • 2015
  • In this study, preconditioned adjoint equations for the quasi one-dimensional Euler equations are developed, and their computational benefit at all speed is assessed numerically. The preconditioned adjoint equations are derived without any assumptions on the preconditioning matrix. The dissipation for Roe type numerical flux is also suggested to scale the dissipation term properly at low Mach numbers as well as at high Mach numbers. The new preconditioned method is validated against analytical solutions. The convergence characteristics over wide range of Mach numbers is evaluated. Finally, several inverse designs for the nozzle are conducted and the applicability of the method is demonstrated.

축소-확대 유로에 적용한 횡류형 수직 풍력발전시스템의 개발 (Development of a Cross-flow Type Vertical Wind Power Generation System for Electric Energy Generation Using Convergent-Divergent Duct)

  • 정상훈;정광섭;김철호
    • 설비공학논문집
    • /
    • 제23권8호
    • /
    • pp.543-548
    • /
    • 2011
  • New concept of wind energy conversion system is proposed to increase the energy density at a given working space. The quality of wind for wind power generation is depend on its direction and speed. However, the quality is not good on land because wind direction is changeable all the time and the speed as well. The most popularly operated wind turbine system is an axial-flow free turbine. But its conversion efficiency is less than 30% and even less than 20% considering the operating time. In this research, a cross-flow type wind turbine system is proposed with a convergent-divergent duct system to accelerate the low speed wind at the inlet of the wind turbine. Inlet guide vane is also introduced to the wind turbine system to have continuous power generation under the change of wind direction. In here, the availability of wind energy generation is evaluated with the change of the size of the inlet guide vane and the optimum geometry of the turbine impeller blade was found for the innovative wind power generation system.

(포항)냉연 New AGC 적용기술 (Application of New AGC to the Cold Rolling Mills of Pohand Works)

  • 김철종;이동섭;박남수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.150-157
    • /
    • 1999
  • As the customer demands thickness quality stricter, new techniques of automatic thickness control(AGC), is adopted to continuous cold rolling mills. The cold rolling mills of Pohang Works have revamped the existing conventional AGC system that control the thickness at all-stands automatically by the mass flow AGC based on the measurement of strip-speed and thickness between mill stands. The No. 2 Cold Rolling Mill be has adopted the New AGC system since Oct. 1995, and The No.1 Cold Rolling Mill since June. 1999. Thanks to the New AGC system, precise control of thickness is possible not only at constant rolling speed region, but also during line speed up and down. This report describes application techniques of the New AGC system and performance of the system.

  • PDF

스포츠카의 에어로 파츠 설치에 따른 유동해석 (Flow Analysis according to the Installation of an Aero Part in a Sports Car)

  • 최계광;조재웅
    • 한국기계가공학회지
    • /
    • 제19권1호
    • /
    • pp.36-42
    • /
    • 2020
  • In this study, flow analyses of a vehicle at driving were carried out after each installation of a tuning part, specifically the bonnet air ducts, the rear spoiler, and the rear diffuser. The study models were designed to comprise a total of eight cases in which each of the three parts were mounted individually or all together in vehicles. Assuming that the vehicle were driven with an average high speed of 100 km/h, the speed and pressure around the vehicle were obtained using CFD when driving. The rear diffuser that becomes the most effective among the three mounting parts has a major role in reducing air resistance.

콜로게이트 열교환기와 평판형 열교환기의 열전달특성에 관한 실험적 연구 (Experimental Study on the Heat Transfer Characteristics in Corrugated and Flat Plate Type Heat Exchanger)

  • 박정훈;정용기;전충환;장영준;임혁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.37-42
    • /
    • 2003
  • An experiment was performed to study heat transfer characteristics between corrugated heat exchanger and flat plate type one. While heat capacity(13.86kW) was provided constantly and the flow speed was varied from 2.8 to 17.9m/s, The temperature and the pressure drop were measured. Furthermore, Heat transfer coefficient, Colburn factor and Nusselt number were calculated using them. With increase of the flow speed for both exchangers, the coefficient and the pressure drop increased, but Colburn factor decreased. The coefficient, pressure drop and Colburn factor of the corrugated type were all higher than those of the flat one, which is due to the flow interruption with recirculation and reattachment of the corrugated type. The empirical correlations of Nusselt number were suggested for the tested two heat exchangers.

  • PDF

배기 과급 디젤기관의 흡배기 유동특성에 관한 실험적 연구 (An experimental study on the flow characteristics of intake and exhaust in turbocharged diesel engine)

  • 배원섭
    • 오토저널
    • /
    • 제13권6호
    • /
    • pp.48-56
    • /
    • 1991
  • This paper describes the experimental investigations on the pressure variations of intake and exhaust manifold and mass flow rate through exhaust turbine of turbocharged 6-cylinder diesel engine. The turbocharger of experimental diesel engine is constructed with the radial ty pe exhaust turbine and blower driven by exhaust gases. The pressure variations were measur ed by pressure transducer at the points such as turbine inlet and outlet, compressor inlet and outlet, and inlet pipe and exhaust manifolds for normal and combined charging engines with the change of engine speed. The experimental results of this study show that the mass flow rate of exhaust turbine and the variations of pressure in intake and exhaust manifold are all increased with the increase of engine speed.

  • PDF

Aerodynamic properties of a streamlined bridge-girder under the interference of trains

  • Li, Huan;He, Xuhui;Hu, Liang;Wei, Xiaojun
    • Wind and Structures
    • /
    • 제35권3호
    • /
    • pp.177-191
    • /
    • 2022
  • Trains emerging on a streamlined bridge-girder may have salient interference effects on the aerodynamic properties of the bridge. The present paper aims at investigating these interferences by wind tunnel measurements, covering surface pressure distributions, near wake profiles, and flow visualizations. Experimental results show that the above interferences can be categorized into two primary effects, i.e., an additional angle of attack (AoA) and an enhancement in flow separation. The additional AoA effect is demonstrated by the upward-moved stagnation point of the oncoming flow, the up-shifted global symmetrical axis of flow around the bridge-girder, and the clockwise-deflected orientation of flow approaching the bridge-girder. Due to this additional AoA effect, the two critical AoAs, where flow around the bridge-girder transits from trailing-edge vortex shedding (TEVS) to impinging leading-edge vortices (ILEV) and from ILEV to leading-edge vortex shedding (LEVS) of the bridge-girder are increased by 4° with respect to the same bridge-girder without trains. On the other hand, the underlying flow physics of the enhancement in flow separation is the large-scale vortices shedding from trains instead of TEVS, ILEV, and LEVS governed the upper half bridge-girder without trains in different ranges of AoA. Because of this enhancement, the mean lift and moment force coefficients, all the three fluctuating force coefficients (drag, lift, and moment), and the aerodynamic span-wise correlation of the bridge-girder are more significant than those without trains.

뉴튼 및 비뉴튼 유체의 헬리컬 유동에 관한 연구 (A Study on the Helical Flow of Newtonian and non-Newtonian fluid)

  • 김영주;김철수;황영규
    • 설비공학논문집
    • /
    • 제17권1호
    • /
    • pp.8-15
    • /
    • 2005
  • This study concerns the characteristics of helical flow in a concentric and eccentric annulus with a diameter ratio of 0.52 and 0.9, whose outer cylinders are stationary and inner ones are rotating. Pressure losses and skin friction coefficients have been measured for fully developed flows of water and $0.2\%$ aqueous of sodium carboxymethyl cellulose(CMC), respectively, when the inner cylinder rotates at the speed of $0\~500$ rpm. The effect of rotation on the skin friction coefficient is significantly dependent on the flow regime. In all flow regimes, the skin friction coefficient is increased by the inner cylinder rotation. This study shows the change of skin friction coefficient and wall shear stress corresponding to the variation of rotating speed of the inner cylinder, radius ratio, eccentricity, and working fluids.

횡 방향으로 회전하는 구 주위의 유동특성 (Laminar Flow past a Sphere Rotating in the Transverse Direction)

  • 김동주;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.83-86
    • /
    • 2002
  • Numerical simulations are conducted for laminar flow past a sphere rotating In the transverse direction, in order to investigate the effect of the rotation on the characteristics of flow over a sphere. The Reynolds numbers considered are Re=100, 250 and 300 based on the free-stream velocity and the sphere diameter, and the rotational speeds are in the range of $0{\leq}{\omega}{\leq}1$, where ${\omega}^{\ast}$ is the maximum velocity on the sphere surface normalized by the free-stream velocity. At ${\omega}^{\ast}=0$ (without rotation), the flow past the sphere experiences steady axisymmeoy, steady planar-symmetry and unsteady planar-symmetry, respectively, at Re=100, 250 and 300. However, with rotation, the flow becomes planar-symmetric for all the cases investigated and the symmetry plane is orthogonal to the axis of the rotation. The flow is also steady or unsteady depending on both the Reynolds number and the rotational speed, and the vortical structures behind the sphere are significantly modified by the rotation. For example, at Re=300, hairpin vortices completely disappear in the wake at ${\omega}^{\ast}=0.4\;and\;0.6$, and at ${\omega}^{\ast}=1$ vortical structures of a high frequency are newly generated due to the shear layer instability. It is also shown that with increasing rotational speed, the time-averaged drag and lift coefficients increase monotonically.

  • PDF