• Title/Summary/Keyword: Alkalophilic Bacillus

Search Result 103, Processing Time 0.021 seconds

Purification and Properties of Non-Cariogenicity Sugar Produced by Alkalophilic Bacillus sp. S-1013

  • Ryu, Il-Hwan;Kim, Sun-Sook;Lee, Kap-Sang
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.751-758
    • /
    • 2004
  • The NCS(Non-Cariogenicity Sugar) from Bacillus sp. S-1013 was purified by cold acetone and methanol precipitation, and DEAE-cellulose ion-exchange and Sephadex G-100 column chromatographies, to yield an amorphous yellow syrup. The melting point and $[\alpha]_D^{20}$ were 155-$157^{\circ}C$ and +53, respectively. Instrumental analyses such as FT-IR, $^1H-NMR, and ^{13}C-NMR$ showed that the NCS contained an O-H group, C-H, C=O, $NH_2$, anomeric carbon, anomeric proton, N-acetylgalactose, fucose, and neuramic acid, thus, the NCS was determined to be a trisaccharide of Fuc($1\longrightarrow4$)GalNAc($2\longrightarrow6$) NeuAc.

Production and Characterization of Thermo-alkalotolerant Cyclodextrin Glucanotransferase from Thermo-alkalophilic Bacillus cereus B-13 (고온성이며 호알칼리성인 Bacillus cereus B-13으로부터 내열성, 호알카리성 Cyclodextrin Glucanotransferase의 생산과 특성)

  • Seo, Seung-Bo;Kim, Jae-Ho;Lee, Dae-Hyong;Lee, Jong-Soo
    • The Journal of Natural Sciences
    • /
    • v.16 no.1
    • /
    • pp.15-29
    • /
    • 2005
  • To produce a thermostable cyclodextrin by using thermotolerant cyclomaltodextrin glucanotransferase(CGTase), a thermophilic and alkalophilic bacterium isolate, designated B-13 showing the highest CGTase activity was isalated from natural sources and identified as Bacillus cereus B-13 based on the morphological and physiological characteristics, and 16S rRNA sequence. The maximal CGTase activity (130 U/ml) was obtained when Bacillus cereus B-13 was cultured in SYC medium containing 2.0% soluble starch, 1.0% yeast extracts, 1% corn steep liquor and 1% $Na_2CO_3$ (pH 8.5) at $50^{\circ}C$ for 24 h and about 80% of maximal activity was also showed in he culture broth of $60^{\circ}C$ for 18 h. Optimum reaction temperature and pH of the partial purified CGTase for soluble starch were $65^{\circ}C$ and pH 8.5-9.0 respectively. The partial purified CGTase were also stable below $80^{\circ}C$ and pH 5.0-10.0. When 1% soluble starch was digested with the partial purified CGTase, the yield of cyclodextrin was 49%.

  • PDF

Purification ana properties of alkaline pretense produced by Bacillus sp. KCTC 1723

  • 정영희;민영희;고영희
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.532.2-532
    • /
    • 1986
  • Alkaline protease which is an important enzyme used in detergents, leather tanning and food industry was produced by alkalophilic bacterium, Bacillus sp. KCTC 1723 isolated from soil. The maximum productivity of the enzyme in alkaline medium containing 1% sodium bicarbonate was obtained by incubating for 3 days at 37$^{\circ}C$. The optimum pH of the enzyme was 11.5 and calcium ion was effective on stabilization of the enzyme at high temperature. The enzyme was not inhibited by metal chelating agent such as El)TA but inhibited by diisopropyl fluorophosphate. Purification of the enzyme was carried out DEAE- and CM-cellulose column chromatographies and molecular weight of the purified enzyme was determined

  • PDF

Isolation of $\beta$-1,4-D-arabinogalactanase Producing Strain and Enzyme Purification ($\beta$-1,4-D-arabinogalactanase 생산균주의 분리 및 효소정제)

  • 신해헌;변유량
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.687-694
    • /
    • 1995
  • Alkalophilic Bacillus sp. HJ-12 producing $\beta $-1, 4-D-arabinogalactanase was isolated from soil in the alkalic condition, pH 10.0. $\beta $-1, 4-D-arabinogalactanase was maximaly produced in the medium consisting of 2% soybean arabinogalactan (SAG), 0.5% yeast extract, 0.5% polypeptone, 0.5% NaCl, 0.1% K$_{2}$HPO$_{4}$, 0.02% MgSO$_{4}$$\cdot $7H$_{2}$O, 0.1% Na$_{2}$CO$_{3}$ under the aerobic condition (pH 8.2). $\beta $-1, 4-D-arabinogalactanase is inducible enzyme so that its activity has been increased 10 fold in the SAG medium than in the glucose medium. Through the ammonium sulfate precipitation, DEAE- Sephadex A-50 ion chromatography, and Sephadex G-75 gel chromatography procedures, this enzyme was purified with a single protein of 11% vield and 110 fold's purity. $\beta $-1, 4-D-arabinogalactanase is endo type enzyme producing ollgosaccharide from SAG.

  • PDF

Purification and Characterization of Xylanase from Bacillus licheniformis, (Bacillus licheniformis Xylanase의 정제와 특성)

  • Park, Yang-Do;Han, Moon-Hi;Kim, Jin-Mee
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.3
    • /
    • pp.187-192
    • /
    • 1983
  • Three kinds of xylanases, X-C, X-I, and X-II, were separated from culture filtrate of an alkalophilic bacteria, Bocillus licheniformis OR-1. Their molecular weights were estimated to be 29, 000, 50, 000, and 34, 000, respectively. They were most active at pH 6.0-6.5, and at temperature of 5$0^{\circ}C$. Mercurc ion and p-chloromercurybenzoate inhibited the xylanase activity of X-C and X-II remarkably, whereas X-I was not affected. Xylanase X-I hydrolyzed barley straw xylan liberating xylose, xylobiose, and arabinose, while X-C and X-II produced only xylobiose and xylotriose.

  • PDF

Asparagine Residue at Position 71 is Responsible for Alkali-Tolerance of the Xylanase from Bacillus Pumilus A-30

  • Liu, Xiang-Mei;Qi, Meng;Lin, Jian-Aiang;Wu, Zhi-Hong;Qu, Yin-Bo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.534-538
    • /
    • 2001
  • The xynA gene encoding an alikali-tolerant endo-1,4-${\beta}$-xylanase (XYN) was cloned from the alkalophilic Bacillus pumilus A-30. The nucleotide sequence of a 974-bp DNA fragment containing the xynA was determined. An ORF of 684 nucleotides that encoded a protein of 228 amino aicds was detected. Asparagine-71 of XYN from B. Pumilus A-30 showed to be highly conservative in alkaline xylanases of family G/11, upon comparing the amino acid sequences of 17 family G/11 xylanases. Site-directed mutation of N71D of the xynA gene resulted in a decrease of 12.4% in the specific acitivity and a significant decline in the enzyme activity in the alkaline pH range.

  • PDF

Enzymatic Production of Amylopectin Cluster Using Cyclodextrin Glucanotransferase (Cyclodextrin Glucanotransferase를 이용한 아밀로펙틴 클러스터의 생산)

  • Lee, Hye-Won;Jeon, Hye-Yeon;Choi, Hyejeong;Shim, Jae-Hoon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.9
    • /
    • pp.1388-1393
    • /
    • 2014
  • To enzymatically prepare amylopectin cluster (APC), cyclodextrin glucanotransferase (CGTase I-5) and its mutant enzyme from alkalophilic Bacillus sp. I-5 were employed, after which the hydrolysis patterns of CGTase wild-type and its mutant enzyme toward amylopectin were investigated using multi-angle laser light scattering. CGTase wild-type dramatically reduced the molecular weight of waxy rice starch at the initial reaction, whereas the mutant enzyme degraded waxy rice starch relatively slowly. Based on the results, the molecular weight of one cluster of amylopectin could be about $10^4{\sim}10^5g/mol$. To determine production of cyclic glucans from amylopectin, matrix-assisted laser desorption ionization time-of-flight mass spectrometry was performed. CGTase I-5 produced various types of cyclic maltooligosaccharides from amylopectin, whereas the mutant enzyme hardly produced any.

Selection and Characterization of Catabolite Repression Resistant Mutant of Bacillus firmus var. alkalophilus Producing Cyclodextrin Glucanotransferase

  • Do, Eun-Ju;Shin, Hyun-Dong;Kim, Chan
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.78-85
    • /
    • 1993
  • In order to elucidate the mechanism which regulates the production of cyclodextrin glucanotransferase (CGTase) and to achieve overproduction of CGTase by releasing catabolite (glucose) repression, several catabolite repression resistant mutants were selected from newly screened Bacillus firmus var. alkalophilus H609, after NTG (N-methyl-N -nitro-N-nitrosoguanidine) treatment, using 2-deoxyglucose as a nonmetabolizable analog of catabolite glucose and as a selection marker. Five catabolite repression resistant mutants were selected from about 30, 000 2-deoxyglucose resistant colonies. Relative catabolite repression indices of the selected mutants were in the range of 8~80% assuming 100% for parent strain. The amount of CGTase produced by the mutant strain CR41, which was 250 units/ml, was three times larger than that produced by its parent strain. The mutation seems to have occurred in the regulatory region of CGTase gene and not in the structural region or the glucose transporting system in cell membrane. The enzymatic properties of CGTase excreted from parent and mutant strains were also compared.

  • PDF

Production and Characterization of an Alkaline Protease from Bacillus licheniformis MH31

  • Yu, Jeong-Hyeon;Jin, Hyun-Seok;Choi, Woo-Young;Yoon, Min-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.135-139
    • /
    • 2006
  • A alkalophilic strain, Bacillus licheniformis MH31 producing an alkaline protease was isolated from mine soil of Boryeong in Korea. Production of a high level of alkaline protease was achieved 42 h after incubation when the bacterium was grown at pH 9.0 and $35^{\circ}C$ in Horikoshi medium supplemented with 0.5%(w/v) starch and 1%(w/v) skim milk as carbon and nitrogen source, respectively. The molecular weight of partially purified enzyme was estimated to be 30 kDa by SDS-PAGE and its optimum pH was pH 10. The enzyme showed optimum temperature at $50^{\circ}C$, and was stable up to $60^{\circ}C$ after 1 h incubation. The protease was strongly inhibited by 1 mM of PMSF which was known well as strong inhibitor of serine proteases, but almost not inhibited by 5 mM of EDTA and 1,10-phenanthroline. When the protein hydrolysis products of 1% skim milk by partially purified protease was compared with available commercial proteases using HPLC analysis, most of hydrolysis products were detected below molecular weight of 10,000 and the hydrolysis ratio of purified enzyme was 24.8% lower than those(above 32%) of commercial proteases.

Purification and Characterization of A Cell Wall Hydrolyzing Enzyme Produced by An Alkalophilic Bacillus sp. BL-29

  • Hong, Soon-Duck;Kim, Tae-Ho;Hong, Soon-Duck
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.206-212
    • /
    • 1995
  • A strain BL-29, which produces a extracellular lytic enzyme on E. coli was isolated from the soil. The strain was identified as belonging to the genus Bacillus sp. The lytic enzyme was purified to homogeneity by ion exchange chromatography and gel filtration. Specific activity of the purified enzyme was 28, 850 U/mg protein and yield of the enzyme was 5$%$. The purified enzyme showed a single band on SDS-PAGE and its molecular weight was estimated to be 31, 000 by SDS-polyacrylamide gel electrophoresis and gel filtration column chromatography. The optimum temperature and pH were $55^{\circ}C$ and pH 10.0, respectively. The enzyme was stable at $45^{\circ}C$ but enzyme activity was reduced by up to 50$%$ when the temperature was raised to $55^{\circ}C$ for 15 min. Stable range of pH was from 5.0 to 11.0. but Enzyme activity was inhibited by lead-acetate, mercuric chloride, ethylene glycol-bis-[$\beta$-aminoethyl ether]-N, N, $N^1, $N^1$-tetraacetic acid (EGTA), and ethylenediamine tetraacetic acid (EDTA), but not affected considerably by treatment with other chemical reagents.

  • PDF