• Title/Summary/Keyword: Alkali-activated

Search Result 255, Processing Time 0.023 seconds

Developing and Assessing Geopolymers from Seochun Pond Ash with a Range of Compositional Ratios (서천화력발전소 매립 석탄재로부터 제조한 다양한 조성비의 지오폴리머와 그 특성의 평가)

  • Lee, Sujeong;Jou, Hyeong-Tae;Chon, Chul-Min;Kang, Nam-Hee;Cho, Sung-Baek
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.134-141
    • /
    • 2013
  • Pond ash produced from Seochun Power Station was quantitatively characterized to manufacture geopolymers with a range of Si/Al compositional ratios. Mix consistency was kept nearly constant for comparing the compressive strengths of geopolymers. The amorphous composition of coal ash was determined using XRF and quantitative X-ray diffraction. Different mix compositions were used in order to achieve Si/Al ratios of 2.0, 2.5 and 3.0 in the geopolymer binder. Geopolymers synthesized from coal ash with a Si/Al ratio of 3.0 exhibited the highest compressive strength in this study. It was found that geopolymers activated with aluminate produced different microstructure from that of geopolymers activated with silicate. High silica in alkali activators produced the fine-grained microstructure of geopolymer gel. It was also found that high compressive strength was related to low porosity and a dense, connected microstructure. The outcome of the reported experiment indicates that quantitative formulation method made it possible to choose suitable activators for achieving targeted compositions of geopolymers and to avoid efflorescence.

Removal of Malodorous Gases Emitted from a Wastewater Pumping Stations by Biological Methods (생물학적 방법에 의한 하수 중계펌프장의 악취제거)

  • 류희욱
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.3
    • /
    • pp.265-270
    • /
    • 2004
  • To select a promising technologies for removal of odorous gases emitted from a wastewater pump station, four methods such as activated carbon (A/C) adsorption, chemical absorption (acid and alkali scrubber), and two biofilters (polyurethane (PU) and worm cast) were investigated. The average odor removal efficiencies in the PU biofilter and A/C column was over 98%, but in a worm cast biofilter and chemical absorption were below 60-80%. The removal efficiency of PU biofilter was very stable (about 98-99%) in the range of retention times of 4-36s, and a maximum elimination capacity was $1.6${\times}$10^{ 7}$ $OUm^{-3}$$h^{-1}$ Deodorization costs for an activated carbon adsorption and a biofiltration method were investigated. With increasing odor intensity, the operating cost of the A/C column increased linearly, but the operating cost of the biofilteration increased slightly. The capital cost in a biofilter is about two times higher than that in an A/C column, but the operating cost is very lower than that of in A/C column. In conclusion, the biofiltration was evaluated one of the most promising technologies to control odor in a wastewater pump station.

Experimental study on chemical activation of recycled powder as a cementitious material in mine paste backfilling

  • Liu, Yin;Lu, Chang;Zhang, Haoqiang;Li, Jinping
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.341-349
    • /
    • 2016
  • To improve the utilization rate of construction waste as mine backfilling materials, this paper investigated the feasibility of using recycled powder as mine paste backfilling cementitious material, and studied the pozzolanic activity of recycled construction waste powder. In this study, alkali-calcium-sulfur served as the activation principle and an orthogonal test plan was performed to analyze the impact of the early strength agent, quick lime, and gypsum on the pozzolanic activity of the recycled powder. Our results indicated that in descending order, early strength agent > quick lime > gypsum affected the strength of the backfilling paste with recycled powder as a cementitious material during early phases. The strength during late phases was affected by, in descending order, quick lime > gypsum > early strength agent. Using setting time and early compressive strength as an analysis index as well as an extreme difference analysis, it was found that the optimal ratio of recycled powder cementitious material for mine paste backfilling was recycled powder:quick lime:gypsum:early strength agent at 78%:10%:8%:4%. X-ray diffraction analysis and scanning electron microscope were used to show that the hydration products of recycled powder cementitious material at the initial stages were mainly CH and ettringite. As hydration time increased, more and more recycled powder was activated. It mainly became calcium silicate hydrate, calcium aluminate hydrate, etc. In summary, recycled powder exhibited potential pozzolanic activities. When activated, it could replace cementitious materials to be used in mine backfill.

Fundamental Characteristics of Activated Fly Ash-Slag Cement Exposed to 5℃ Seawater (5℃ 해수에 노출된 알칼리 활성 플라이애시-슬래그 시멘트의 기초 특성)

  • Kim, Taewan;Jun, Yubin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.302-309
    • /
    • 2019
  • This paper shows an experimental study for fundamental characteristics of alkali activated fly ash-slag cement paste exposed to seawater of 5℃. Fly ash and slag were blended in three different ratios; 6:4, 7:3, and 8:2. Activators (NaOH and Na2SiO3) used 5% of the binder weight. It was shown that as the fly ash substitution rate in creased, compressive strength and density decreased, and water absorption rate increased. The results of X-ray diffraction and thermogravimetry showed that hydration reactants formed in samples did not differ significantly, however, C-S-H gel increased as the slag substitution rate increased. It showed that mechanical properties of fly ash-slag cement pastes under 5℃ seawater condition were affected by the slag substitution rate rather than fly ash.

Soil stabilization by ground bottom ash and red mud

  • Kim, Youngsang;Dang, My Quoc;Do, Tan Manh;Lee, Joon Kyu
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.105-112
    • /
    • 2018
  • This paper presents results of a compressive investigation conducted on weathered soil stabilized with ground bottom ash (GBA) and red mud (RM). The effects of water/binder ratio, RM/GBA ratio, chemical activator (NaOH and $Na_2SiO_3$) and curing time on unconfined compressive strength of stabilized soils were examined. The results show that the water/binder ratio of 1.2 is optimum ratio at which the stabilized soils have the maximum compressive strength. For 28 days of curing, the compressive strength of soils stabilized with alkali-activated GBA and RM varies between 1.5 MPa and 4.1 MPa. The addition of GBA, RM and chemical activators enhanced strength development and the rate of strength improvement was more significant at the later age than at the early age. The potential environmental impacts of stabilized soils were also assessed. The chemical property changes of leachate from stabilized soils were analyzed in terms of pH and concentrations of hazardous elements. The observation revealed that the soil mixture with ground bottom ash and red mud proved environmentally safe.

Influence on mechanical property of C-S-H(I) due to its structural modification (C-S-H(I)의 분자구조변형을 통한 기계적 거동의 변화)

  • Oh, Jae-Eun;Monteiro, Paulo J.M.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.473-474
    • /
    • 2010
  • This high pressure synchrotron X-ray diffraction study examined the change of bulk modulus of C-S-H(I), core material creating strength in alkali-activated slag cement as well as structural model of C-S-H, mainly attributed to Al-substitution for Si, which occurs at the bridging tetrahedral sites in dreierketten silicate chains in the nanostructure of C-S-H(I). This study presents that Al-substitution in C-S-H(I) does not affect the bulk modulus of C-S-H(I), which is surprising because many researchers have expected that Al-substitution should induce some critical change in mechanical properties of C-S-H(I).

  • PDF

Characterization of alkali activated geopolymer mortar doped with MWCNT

  • Khater, H.M.;Abd el Gawaad, H.A.
    • Advances in materials Research
    • /
    • v.4 no.1
    • /
    • pp.45-60
    • /
    • 2015
  • This paper aimed to investigate the effect of MWCNTs on properties of slag Geopolymeric mortar. Geopolymeric matrices containing different MWCNTs concentrations (0.0, 0.1, 0.2, 0.3 and 0.4 % by weight of the used binder) were synthesized. The Geopolymer mortar composed of aluminosilicate slag to sand (1:2), while the alumino silicate source binder composed of 50% air cooled slag and 50%water cooled slag both passing a sieve of $90{\mu}m$, while the sand passing a sieve of 1 ml. The materials prepared at water/binder ratios in a range of 0.34-0.39% depending on the added MWCNT, whereas the Gelenium Ace-30 superplasticizer used in the ratio of 1.4-2.2% from the total dry weight for better dispersion of MWCNT under sonication for 15 min. Alkaline activation of the Geopolymer mortar was carried by using of 6% NaOH. Curing was performed under temperature of $40^{\circ}C$ and 100% R.H. Results showed that the addition of MWCNTs enhanced the resulting amorphous geopolymer structure with marked decrease in the drying shrinkage as well as water absorption specially when using 0.1% MWCNT, while further increase in MWCNTs results in agglomeration in MWCNT within the matrix and so hinder the propagation of Geopolymerization reaction and negatively affect the formed geopolymer structure.

Purification and Characterization of an Alkali-Thermostable Lipase from Thermophilic Anoxybacillus flavithermus HBB 134

  • Bakir, Zehra Burcu;Metin, Kubilay
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1087-1097
    • /
    • 2016
  • An intracellular lipase from Anoxybacillus flavithermus HBB 134 was purified to 7.4-fold. The molecular mass of the enzyme was found to be about 64 kDa. The maximum activity of the enzyme was at pH 9.0 and 50℃. The enzyme was stable between pH 6.0 and 11.0 at 25℃, 40℃, and 50℃ for 24 h. The Km and Vmax of the enzyme for pNPL substrate were determined as 0.084 mM and 500 U/mg, respectively. Glycerol, sorbitol, and mannitol enhanced the enzyme thermostability. The enzyme was found to be highly stable against acetone, ethyl acetate, and diethyl ether. The presence of PMSF, NBS, DTT and β-mercaptoethanol inhibited the enzyme activity. Hg2+, Fe3+, Pb2+, Al3+, and Zn2+ strongly inhibited the enzyme whereas Li+, Na+, K+, and NH4+ slightly activated it. At least 60% of the enzyme activity and stability were retained against sodium deoxycholate, sodium taurocholate, n-octyl-β-D-glucopyranoside, and CHAPS. The presence of 1% Triton X-100 caused about 34% increase in the enzyme activity. The enzyme is thought to be a true lipase since it has preferred the long-chain triacylglycerols. The lipase of HBB 134 cleaved triolein at the 1- or 3-position.

Effect of activator types on cement mortar with polymeric aluminum chloride waste residue

  • Ping Xu;Yuhao Cui;Dong Han;Minxia Zhang;Yahong Ding
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.149-159
    • /
    • 2023
  • Water glass (WG) and sodium sulfate (SS) were used to prepare polymeric aluminum chloride residue cement mortar (PACRM) by single and compound blending with polymeric aluminum chloride waste residue, respectively. The structural strength and textural characteristics examinations showed that PACRM consistency increased by incorporating WG, but decreased by incorporating SS. When WG and SS were compounded, the mortar consistency initially rose before falling. The compressive strength of PACRM increased and then decreased as WG was increased. The mechanical properties of PACRM were better enhanced by SS than WG, showing no strength deterioration. The main reason for the improved mechanical properties of polymeric aluminum chloride waste residue in the presence of activators is the increased precipitation of reactive substances, such as C-S-H gels, calcium silica, and Ca(OH)2. The density of the specimens with PACRM and the degree of aggregation of hydration products were significantly enhanced by generating more hydration products in the mortar. Further, the cracks and pores were significantly reduced, and the matrix structure was continuous and dense at 5% SS doping and 3% compound doping.

Properties of Eco-Construction Material Using Recycled Sewage Sludge Ash (하수슬러지 소각재를 재활용한 친환경 건설 소재의 재료적 특성)

  • Jo, Byung-Wan;Lee, Jea-Ik;Park, Seung-Kook;Lee, Jae-Seung
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.667-676
    • /
    • 2007
  • As the 21st century began, cement and concrete that are representatives of modem building materials became a major factor in global warming, air pollution and environmental pollution. Also, the problems that are generated while pursuing high performance and high strength became social issues. Therefore, it has become urgent to prepare counter plans. This study has aimed at the recycling of sewage sludge ash and developing it as a new concept in building material which serves the environmental considerations for long-lasting developmental purpose. Also, the study aimed to find a substitute for scarce natural resources and to secure high techniques for waste recycling. The purpose of this study was also to solve fundamentally secondary environmental pollution. The results revealed that the chemical components of sewage sludge ash are mainly $SiO_2\;and\;Al_2O_3$ which are similar to the components of pozzolan. Also, it was identified that sewage sludge ash can be utilized as a hardened specimen with an alkali activated pozzolan reaction. Considering the possibility of appropriate strength development and the advantage of drying shrinkage, compared with that of cement, it was believed that sewage sludge ash can demonstrate a function as a substitute for cement given.