• 제목/요약/키워드: Alkali metal salts

검색결과 27건 처리시간 0.018초

알카리 금속염으로부터 대전방지용 수분산 폴리우레탄 코팅용액 제조 (Preparation of Waterborne Polyurethane Coating Solutions with Antistatic Property from Alkali Metal Salts)

  • 홍민기;김병석;이용운;송기창
    • Korean Chemical Engineering Research
    • /
    • 제50권3호
    • /
    • pp.427-434
    • /
    • 2012
  • Poly (carbonate diol)과 isophrone diisocyanate 그리고 dimethylol propionic acid로 부터 NCO/OH 몰 비를 0.8, 1.1, 1.3으로 각각 조절하여 수분산 폴리우레탄(waterborne polyurethane dispersion, PUD)을 합성하였다. 이 용액에 알카리 금속염인 $LiClO_4$, $NaClO_4$, $KClO_4$를 첨가하여 대전방지용 수분산 폴리우레탄 코팅 용액을 제조하였다. 이 과정에서 첨가되는 알카리 금속염의 첨가량과 종류가 코팅 도막의 표면저항에 미치는 영향을 살펴보았다. 알카리 금속염의 첨가량이 증가될수록 코팅 도막의 표면저항은 감소하였다. 그러나 PUD에 같은 양의 알카리 금속염이 첨가될 경우에는 $LiClO_4$ > $NaClO_4$ > $KClO_4$의 순서로 코팅 도막의 이온 전도도가 우수함을 알 수 있었다. 또한 PUD 내의 NCO/OH 몰 비가 증가함에 따라 코팅 도막의 표면저항이 증가하여 이온 전도도가 감소하였다.

Influence of Alkali Metal Cation Type on Ionization Characteristics of Carbohydrates in ESI-MS

  • Choi, Sung-Seen;Kim, Jong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권9호
    • /
    • pp.1996-2000
    • /
    • 2009
  • Alkali metal salts were introduced to enhance the ionization efficiency of glucose and maltooligoses in electrospray ionization-mass spectrometry (ESI-MS). A mixture of the same moles of glucose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, and maltoheptaose was used. Salts of lithium, sodium, potassium, and cesium were employed as the cationizing agent. The ionization efficiency varied with the alkali metal cation types as well as the analyte sizes. Ion abundance distribution of the [M+$cation]^+$ ions of the carbohydrates varied with the fragmentor voltage. The maximum ion abundance at low fragmentor voltage was observed at maltose, while the maximum ion abundance at high fragmentor voltage shifted to maltotriose or maltotetraose for Na, K, and Cs. Variation of the ionization efficiency was explained with the hydrated cation size and the binding energy of the analyte and alkali metal cation.

Silk Fibroin 막에 관한 연구(III) ―Silk Fibroin 막의 Alkali Metal Ion선택투과성― (Studies on Silk Fibroin Membranes(III) ―Permselectivity of Alkali Metal Chlorides through Silk Fibroin Membrane―)

  • Choi, Hae Wook;Sung, Woo Kyung;Park, Soo Min;Kim, Kyung Hwan
    • 한국염색가공학회지
    • /
    • 제6권4호
    • /
    • pp.72-76
    • /
    • 1994
  • The permselectivity of alkali metal chlorides through silk fibroin membrane was investigated at $25^{\circ}C$: The Permeability coefficients were found to increase in a sequence of LiCl < NaCl < KCl < CsCl. This sequence was explained by considering the partition and the hydrophilic membrane. The dependence of the permeability on the salts concentration was interpreted by means of TMS theory. The ionic mobility ratio of alkali metal chlorides through this membrane decreased with the increase of the Stokes radius. The Effectiveness of the charged density was found to depend on the ionic species. The greater the Stokes radius the larger the effective charge density of membrane.

  • PDF

황에 저항성을 가지는 수성가스 전환반응 촉매의 연구 II. CoMo 촉매의 활성에 미치는 알칼리 금속염의 영향 (A Study on the Sulfur-Resistant Catalysts for Water Gas Shift Reaction II. Effect of Alkali Metal Salt on the Activity of CoMo Catalyst)

  • 김준희;이호인
    • 대한화학회지
    • /
    • 제42권6호
    • /
    • pp.696-702
    • /
    • 1998
  • 황피독에 저항성을 가지는 수성가스 전환반응용 CoMo 계열 촉매에 알칼리금속염 첨가가 반응활성에 미치는 영향에 대하여 연구하였다. 알칼리금속염의 음이온과 양이온의 각각에 대한 영향을 알아보기 위하여 크게 두 경우로 나누어 촉매를 제조하였다. 그 하나는, 양이온을 K로 고정시키고 음이온을 변형시킨 경우로서, 반응활성의 변화는 BET 표면적의 변화로 설명되었다. 다른 한 경우는, 음이온을 $NO_3^-$로 고정시키고 알칼리금속 이온을 변형시킨 경우로서, Li가 첨가된 촉매의 활성이 가장 뛰어났으며 다른 양이온의 경우에는 서로 비슷한 낮은 활성을 보였다. 알칼리금속의 첨가량의 변화에 따른 BET 표면적의 변화와 반응활성의 변화가 같은 경향을 보였다. 알칼리금속염의 양이온을 변화시킨 경우에는 BET 표면적과 정8면체 배위구조 속의 $Mo^{6+}$에 대한 정4면체 배위구조 속의 $Mo^{6+}$의 비, 즉 $Mo^6+[T]/Mo^{6+}[O]$ 값의 복합적인 관계를 통해 반응활성의 변화를 설명할 수 있었다.

  • PDF

Electrochemical Studies on Ion Recognition of Alkali Metal Cations by 18-crown-6 in Methanol

  • Chi-Woo Lee;Chang-Hyeong Lee;Doo-Soon Shin;Si-Joong Kim
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권5호
    • /
    • pp.487-490
    • /
    • 1991
  • Electrochemical studies of alkali metal cations $(Na^+, K^+, Rb^+, Cs^+)$ were performed in methanolic solutions of 18-crown-6 and tetrabutylammonium salts at dropping mercury electrodes (DME) and thin mercury film electrodes (TMFE). All the cations investigated were reduced reversibly at DME in the absence and presence of 18-crown-6, and in the latter the limiting currents were decreased and the reduction potentials shifted to the negative direction. The reduction potentials of the metal ions (0.2 mM) in the presence of the crown (10 mM) were - 2.14 $(Na^+)$, - 2.26 $(K^+)$, - 2.20 $(Rb^+) and - 2.14 $(Cs^+)$ V vs. SCE, respectively. The measured potentials were rationalized with ion recognition of the cations by the crown. Electroreduction at TMFE were highly irreversible. A new representation method of ion recognition is presented. In aqueous solutions, electroreduction of the alkali metal ions were characterized by adsorption.

Influence of Inorganic Salts on Aqueous Solubilities of Polycyclic Aromatic Hydrocarbons

  • Yim, Soobin
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제8권3호
    • /
    • pp.23-29
    • /
    • 2003
  • Setschenow constants of six alkali and alkaline earth metal-based electrolytes (i.e., NaCl, KCl, CaCl$_2$, K$_2$SO$_4$, Na$_2$SO$_4$, NaClO$_4$) for three polycyclic aromatic hydrocarbons (PAHs) (i.e., naphthalene, pyrene, and perylene) were investigated to evaluate the influence of a variety of inorganic salts on the aqueous solubility of PAHs. Inorganic salts showed a wide range of K$\_$s/ values (L/mol), ranging from 0.1108 (NaClO$_4$) to 0.6680 (Na$_2$SO$_4$) for naphthalene, 0.1071 (NaClO$_4$) to 0.7355 (Na$_2$SO$_4$) for pyrene, and 0.1526 (NaClO$_4$) to 0.8136 (Na$_2$SO$_4$) for perylene. In general, the salting out effect of metal cations decreased in the order of Ca$\^$2+/>Na$\^$+/>K$\^$+/. The effect of SO$_4$$\^$2-/>Cl$\^$-/>ClO4$\^$-/ was observed for anions of inorganic salts. The K$\_$s/ values decreased in the order of perylene>pyrene>naphthalene for K$_2$SO$_4$. However, the order of decreasing salting out effect for NaCl, KCl, CaCl$_2$, and NaClO$_4$ was perylene>naphthalene>pyrene. Hydration free energy of the 1:1 and 2:1 alkali and alkaline earth metal-based inorganic salts solution was observed to have a meaningful correlation with Setschenow constants. Thermodynamic interactions between PAH molecules and salt solution can be of importance in determining the magnitude of salting out effect for PAHs at a given salt solution.

An Efficient Preparation of 4-Nitrosoaniline from the Reaction of Nitrobenzene with Alkali Metal Ureates

  • Park, Jaebum;Kim, Hyung Jin
    • 대한화학회지
    • /
    • 제60권4호
    • /
    • pp.251-256
    • /
    • 2016
  • This paper describes the synthesis of alkali metal salts of urea (ureates) and their application to the direct preparation of 4-nitrosoaniline from nitrobenzene via nucleophilic aromatic substitution of hydrogen. Sodium and potassium ureates were readily prepared from the reaction of urea with sodium hydride, metal methoxides, and metal hydroxides. The effect of ureates as nucleophiles on the conversion of nitrobenzene to 4-nitrosoaniline was investigated and compared with that of a urea-metal hydroxide mixture. It was found that the ureates were superior for producing 4-nitrosoaniline owing to their higher thermal stability of the ureate. The ureate obtained from the treatment of urea with sodium hydride gave the highest yield for the preparation of 4-nitrosoaniline. The ureates generated from the reaction of urea with metal hydroxide also gave high yields of 4-nitrosoaniline. Catalytic hydrogenation of 4-nitrosoaniline afforded polymer-grade 1,4-benzenediamine in quantitative yield.

Syntheses and Thermal Behaviors of Rb(FOX-7)·H2O and Cs(FOX-7)·H2O

  • Luo, Jinan;Xu, Kangzhen;Wang, Min;Song, Jirong;Ren, Xiaolei;Chen, Yongshun;Zhao, Fengqi
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2867-2872
    • /
    • 2010
  • Two new energetic organic alkali metal salts, 1,1-diamino-2,2-dinitroethylene rubidium salt [Rb(FOX-7)${\cdot}H_2O$] and 1,1-diamino-2,2-dinitroethylene cesium salt [Cs(FOX-7)${\cdot}H_2O$], were synthesized by reacting of 1,1-diamino-2,2-dinitroethylene (FOX-7) and rubidium chloride or cesium chloride in alkali methanol aqueous solution, respectively. The thermal behaviors of Rb(FOX-7)${\cdot}H_2O$ and Cs(FOX-7)${\cdot}H_2O$ were studied with DSC and TG methods. The critical temperatures of thermal explosion of the two compounds are 216.22 and $223.73^{\circ}C$, respectively. Specific heat capacities of the two compounds were determined with a micro-DSC method, and the molar heat capacities are 217.46 and $199.47\;J\;mol^{-1}\;K^{-1}$ at 298.15 K, respectively. The adiabatic times-to-explosion were also calculated to be a certain value of 5.81 - 6.36 s for Rb(FOX-7)${\cdot}H_2O$, and 9.92 - 10.54 s for Cs(FOX-7)${\cdot}H_2O$. After FOX-7 becoming alkali metal salts, thermal decomposition temperatures of the compounds heighten with the rise of element period, but thermal decomposition processes become intense.

글리신 금속염 함침 입자상 활성탄의 저농도 이산화탄소 흡착능 평가연구 (Adsorption of Low-level CO2using Activated Carbon Pellet with Glycine Metal Salt Impregnation)

  • 임윤희;;조영민
    • 한국대기환경학회지
    • /
    • 제30권1호
    • /
    • pp.68-76
    • /
    • 2014
  • The present study has evaluated the $CO_2$ adsorption amount of activated carbon pellets (AC). Coconut shell based test AC were modified with surface impregnation of glycine, glycine metal salts and monoethanolamine for low level $CO_2$ (3000 ppm) adsorption. Physical and chemical properties of prepared adsorbents were analyzed and the adsorbed amount of $CO_2$ was investigated by using pure and 3,000 ppm $CO_2$ levels. The impregnation of nitrogen functionalities was verified by XPS analysis. The adsorption capacity for pure $CO_2$ gas was found to reach upto 3.08 mmol/g by AC-LiG (Activated carbon-Lithium glycinate), which has the largest specific surface area ($1026.9m^2/g$). As for low level $CO_2$ flow the primary amine impregnated adsorbent showed 0.26 mmol/g of adsorption amount, indicating the highest selectivity. An adsorbent with potassium-glycine salts (AC-KG, Activated carbon-Potassium glycinate) instead of amine presented with 0.12 mmol/g of adsorption capacity, which was higher than that of raw activated carbon granules (0.016 mmol/g).