• Title/Summary/Keyword: Alkali metal salts

Search Result 27, Processing Time 0.018 seconds

Preparation of Waterborne Polyurethane Coating Solutions with Antistatic Property from Alkali Metal Salts (알카리 금속염으로부터 대전방지용 수분산 폴리우레탄 코팅용액 제조)

  • Hong, Min Gi;Kim, Byung Suk;Lee, Yong Woon;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.427-434
    • /
    • 2012
  • Waterborne polyurethane dispersions (PUD) were synthesized from poly (carbonate diol), isophrone diisocyanate and dimethylol propionic acid at different NCO/OH molar ratios. Subsequently, the PUD was mixed with different types of alkali metal salts ($LiClO_4$, $NaClO_4$, and $KClO_4$) to prepare antistatic waterborne polyurethane coating solutions. Effects of the types and amounts of alkali metal salts were investigated on the surface resistances of the resulting coating films. The surface resistances of coating films were decreased with increasing the amounts of alkali metal salts added in the PUD. The coating films prepared with the same amount of alkali metal salts showed increased ionic conductivity with the order of $LiClO_4$ > $NaClO_4$ > $KClO_4$. Also, the surface resistances of coating films were increased with increasing the molar ratios of NCO/OH in the PUD.

Influence of Alkali Metal Cation Type on Ionization Characteristics of Carbohydrates in ESI-MS

  • Choi, Sung-Seen;Kim, Jong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1996-2000
    • /
    • 2009
  • Alkali metal salts were introduced to enhance the ionization efficiency of glucose and maltooligoses in electrospray ionization-mass spectrometry (ESI-MS). A mixture of the same moles of glucose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, and maltoheptaose was used. Salts of lithium, sodium, potassium, and cesium were employed as the cationizing agent. The ionization efficiency varied with the alkali metal cation types as well as the analyte sizes. Ion abundance distribution of the [M+$cation]^+$ ions of the carbohydrates varied with the fragmentor voltage. The maximum ion abundance at low fragmentor voltage was observed at maltose, while the maximum ion abundance at high fragmentor voltage shifted to maltotriose or maltotetraose for Na, K, and Cs. Variation of the ionization efficiency was explained with the hydrated cation size and the binding energy of the analyte and alkali metal cation.

Studies on Silk Fibroin Membranes(III) ―Permselectivity of Alkali Metal Chlorides through Silk Fibroin Membrane― (Silk Fibroin 막에 관한 연구(III) ―Silk Fibroin 막의 Alkali Metal Ion선택투과성―)

  • Choi, Hae Wook;Sung, Woo Kyung;Park, Soo Min;Kim, Kyung Hwan
    • Textile Coloration and Finishing
    • /
    • v.6 no.4
    • /
    • pp.72-76
    • /
    • 1994
  • The permselectivity of alkali metal chlorides through silk fibroin membrane was investigated at $25^{\circ}C$: The Permeability coefficients were found to increase in a sequence of LiCl < NaCl < KCl < CsCl. This sequence was explained by considering the partition and the hydrophilic membrane. The dependence of the permeability on the salts concentration was interpreted by means of TMS theory. The ionic mobility ratio of alkali metal chlorides through this membrane decreased with the increase of the Stokes radius. The Effectiveness of the charged density was found to depend on the ionic species. The greater the Stokes radius the larger the effective charge density of membrane.

  • PDF

A Study on the Sulfur-Resistant Catalysts for Water Gas Shift Reaction II. Effect of Alkali Metal Salt on the Activity of CoMo Catalyst (황에 저항성을 가지는 수성가스 전환반응 촉매의 연구 II. CoMo 촉매의 활성에 미치는 알칼리 금속염의 영향)

  • Kim, Joon Hee;Lee, Ho In
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.6
    • /
    • pp.696-702
    • /
    • 1998
  • The effect of alkali metal salt on the activity of Co-Mo catalyst which has high resistance to sulfur poisoning for water gas shift reaction(WGSR) was studied. Two groups of catalysts were prepared to investigate the effects of anion and cation in alkali metal salts. For K-doped catalysts made with various potassium salts having different anion, the catalytic activity was explained to depend mainly on the BET surface area. Among the catalysts prepared by various nitrates of alkali metal as precursor, the Li-doped catalyst showed the best activity, and the others did not make significant differences giving relatively low activities. And the change of BET surface area by varying the loading of alkali metal showed a similar trend to that of activity. In this case, the activity was dependent on both BET surface area and the ratio of $Mo^{6+}$ with a tetrahedral coordination symmetry to $Mo^{6+}$ with an octahedral one, $Mo^6+[T]/Mo^{6+}[O]$ value.

  • PDF

Synthesis and Antifungal Activity of Dithiocarbamoic Acid Derivatives

  • Kim, Ha-Yeon;Lee, Jong-Dae
    • Journal of Integrative Natural Science
    • /
    • v.2 no.3
    • /
    • pp.198-201
    • /
    • 2009
  • Dithiocarbamoic acid and their derivatives were found to readily react with potassium and sodium hydroxide to give the corresponding alkali metal dithiocarbamoic acid derivatives 8-17 in moderate to good yields.

  • PDF

Electrochemical Studies on Ion Recognition of Alkali Metal Cations by 18-crown-6 in Methanol

  • Chi-Woo Lee;Chang-Hyeong Lee;Doo-Soon Shin;Si-Joong Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.487-490
    • /
    • 1991
  • Electrochemical studies of alkali metal cations $(Na^+, K^+, Rb^+, Cs^+)$ were performed in methanolic solutions of 18-crown-6 and tetrabutylammonium salts at dropping mercury electrodes (DME) and thin mercury film electrodes (TMFE). All the cations investigated were reduced reversibly at DME in the absence and presence of 18-crown-6, and in the latter the limiting currents were decreased and the reduction potentials shifted to the negative direction. The reduction potentials of the metal ions (0.2 mM) in the presence of the crown (10 mM) were - 2.14 $(Na^+)$, - 2.26 $(K^+)$, - 2.20 $(Rb^+) and - 2.14 $(Cs^+)$ V vs. SCE, respectively. The measured potentials were rationalized with ion recognition of the cations by the crown. Electroreduction at TMFE were highly irreversible. A new representation method of ion recognition is presented. In aqueous solutions, electroreduction of the alkali metal ions were characterized by adsorption.

Influence of Inorganic Salts on Aqueous Solubilities of Polycyclic Aromatic Hydrocarbons

  • Yim, Soobin
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.23-29
    • /
    • 2003
  • Setschenow constants of six alkali and alkaline earth metal-based electrolytes (i.e., NaCl, KCl, CaCl$_2$, K$_2$SO$_4$, Na$_2$SO$_4$, NaClO$_4$) for three polycyclic aromatic hydrocarbons (PAHs) (i.e., naphthalene, pyrene, and perylene) were investigated to evaluate the influence of a variety of inorganic salts on the aqueous solubility of PAHs. Inorganic salts showed a wide range of K$\_$s/ values (L/mol), ranging from 0.1108 (NaClO$_4$) to 0.6680 (Na$_2$SO$_4$) for naphthalene, 0.1071 (NaClO$_4$) to 0.7355 (Na$_2$SO$_4$) for pyrene, and 0.1526 (NaClO$_4$) to 0.8136 (Na$_2$SO$_4$) for perylene. In general, the salting out effect of metal cations decreased in the order of Ca$\^$2+/>Na$\^$+/>K$\^$+/. The effect of SO$_4$$\^$2-/>Cl$\^$-/>ClO4$\^$-/ was observed for anions of inorganic salts. The K$\_$s/ values decreased in the order of perylene>pyrene>naphthalene for K$_2$SO$_4$. However, the order of decreasing salting out effect for NaCl, KCl, CaCl$_2$, and NaClO$_4$ was perylene>naphthalene>pyrene. Hydration free energy of the 1:1 and 2:1 alkali and alkaline earth metal-based inorganic salts solution was observed to have a meaningful correlation with Setschenow constants. Thermodynamic interactions between PAH molecules and salt solution can be of importance in determining the magnitude of salting out effect for PAHs at a given salt solution.

An Efficient Preparation of 4-Nitrosoaniline from the Reaction of Nitrobenzene with Alkali Metal Ureates

  • Park, Jaebum;Kim, Hyung Jin
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.4
    • /
    • pp.251-256
    • /
    • 2016
  • This paper describes the synthesis of alkali metal salts of urea (ureates) and their application to the direct preparation of 4-nitrosoaniline from nitrobenzene via nucleophilic aromatic substitution of hydrogen. Sodium and potassium ureates were readily prepared from the reaction of urea with sodium hydride, metal methoxides, and metal hydroxides. The effect of ureates as nucleophiles on the conversion of nitrobenzene to 4-nitrosoaniline was investigated and compared with that of a urea-metal hydroxide mixture. It was found that the ureates were superior for producing 4-nitrosoaniline owing to their higher thermal stability of the ureate. The ureate obtained from the treatment of urea with sodium hydride gave the highest yield for the preparation of 4-nitrosoaniline. The ureates generated from the reaction of urea with metal hydroxide also gave high yields of 4-nitrosoaniline. Catalytic hydrogenation of 4-nitrosoaniline afforded polymer-grade 1,4-benzenediamine in quantitative yield.

Syntheses and Thermal Behaviors of Rb(FOX-7)·H2O and Cs(FOX-7)·H2O

  • Luo, Jinan;Xu, Kangzhen;Wang, Min;Song, Jirong;Ren, Xiaolei;Chen, Yongshun;Zhao, Fengqi
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2867-2872
    • /
    • 2010
  • Two new energetic organic alkali metal salts, 1,1-diamino-2,2-dinitroethylene rubidium salt [Rb(FOX-7)${\cdot}H_2O$] and 1,1-diamino-2,2-dinitroethylene cesium salt [Cs(FOX-7)${\cdot}H_2O$], were synthesized by reacting of 1,1-diamino-2,2-dinitroethylene (FOX-7) and rubidium chloride or cesium chloride in alkali methanol aqueous solution, respectively. The thermal behaviors of Rb(FOX-7)${\cdot}H_2O$ and Cs(FOX-7)${\cdot}H_2O$ were studied with DSC and TG methods. The critical temperatures of thermal explosion of the two compounds are 216.22 and $223.73^{\circ}C$, respectively. Specific heat capacities of the two compounds were determined with a micro-DSC method, and the molar heat capacities are 217.46 and $199.47\;J\;mol^{-1}\;K^{-1}$ at 298.15 K, respectively. The adiabatic times-to-explosion were also calculated to be a certain value of 5.81 - 6.36 s for Rb(FOX-7)${\cdot}H_2O$, and 9.92 - 10.54 s for Cs(FOX-7)${\cdot}H_2O$. After FOX-7 becoming alkali metal salts, thermal decomposition temperatures of the compounds heighten with the rise of element period, but thermal decomposition processes become intense.

Adsorption of Low-level CO2using Activated Carbon Pellet with Glycine Metal Salt Impregnation (글리신 금속염 함침 입자상 활성탄의 저농도 이산화탄소 흡착능 평가연구)

  • Lim, Yun Hui;Adelodun, A.A.;Jo, Young Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.1
    • /
    • pp.68-76
    • /
    • 2014
  • The present study has evaluated the $CO_2$ adsorption amount of activated carbon pellets (AC). Coconut shell based test AC were modified with surface impregnation of glycine, glycine metal salts and monoethanolamine for low level $CO_2$ (3000 ppm) adsorption. Physical and chemical properties of prepared adsorbents were analyzed and the adsorbed amount of $CO_2$ was investigated by using pure and 3,000 ppm $CO_2$ levels. The impregnation of nitrogen functionalities was verified by XPS analysis. The adsorption capacity for pure $CO_2$ gas was found to reach upto 3.08 mmol/g by AC-LiG (Activated carbon-Lithium glycinate), which has the largest specific surface area ($1026.9m^2/g$). As for low level $CO_2$ flow the primary amine impregnated adsorbent showed 0.26 mmol/g of adsorption amount, indicating the highest selectivity. An adsorbent with potassium-glycine salts (AC-KG, Activated carbon-Potassium glycinate) instead of amine presented with 0.12 mmol/g of adsorption capacity, which was higher than that of raw activated carbon granules (0.016 mmol/g).