• Title/Summary/Keyword: Alignment error

Search Result 314, Processing Time 0.029 seconds

A Case Study on MIL-STD-1760E based Test Bench Implementation for Aircraft-Weapon Interface Testing (항공기-무장간의 연동 시험을 위한 MIL-STD-1760E 기반 테스트 벤치 구축 사례 연구)

  • Kim, Tae-bok;Park, Ki-seok;Kim, Ji-hoon;Jung, Jae-won;Kwon, Byung-gi
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.57-63
    • /
    • 2018
  • In the case of aircraft-launched guided weapons, various interface tests such as MIL-STD-1760 based power source, discrete signal, MUX communication as well as BIT of missile can verify system safety and reliability. The purpose of this case study is to develop a test bench based on MIL-STD-1760E for interoperability testing between aircraft and weapons. We proposed a testing method of the launch sequence based on the defined TIME LINE in the development phase of the missile system from the application of the power of the missile to the targeting, the transfer order, and the missile separation process. Furthermore, it will be a reference model that can maximize the verification scope in the development phase of the air to surface missile system by simulating abnormal situation to the inert missile using the error insertion function.

Effect of post-rinsing time and method on accuracy of denture base manufactured with stereolithography

  • Katheng, Awutsadaporn;Kanazawa, Manabu;Komagamine, Yuriko;Iwaki, Maiko;Namano, Sahaprom;Minakuchi, Shunsuke
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.1
    • /
    • pp.45-55
    • /
    • 2022
  • PURPOSE. This in vitro study investigates the effect of different post-rinsing times and methods on the trueness and precision of denture base resin manufactured through stereolithography. MATERIALS AND METHODS. Ninety clear photopolymer resin specimens were fabricated and divided into nine groups (n = 10) based on rinsing times and methods. All specimens were rinsed with 99% isopropanol alcohol for 5, 10, and 15 min using three methods-automated, ultrasonic cleaning, and hand washing. The specimens were polymerized for 30 min at 40℃. For trueness, the scanned intaglio surface of each SLA denture base was superimposed on the original standard tessellation language (STL) file using best-fit alignment (n = 10). For precision, the scanned intaglio surface of the STL file in each specimen group was superimposed across each specimen (n = 45). The root mean square error (RMSE) was measured, and the data were analyzed statistically through one-way ANOVA and Tukey test (α < .05). RESULTS. The 10-min automated group exhibited the lowest RMSE. For trueness, this was significantly different from specimens in the 5-min hand-washed group (P < .05). For precision, this was significantly different from those of other groups (P < .05), except for the 15-min automated and 15-min ultrasonic groups. The color map results indicated that the 10-min automated method exhibited the most uniform distribution of the intaglio surface adaptation. CONCLUSION. The optimal postprocessing rinsing times and methods for achieving clear photopolymer resin were found to be the automated method with rinsing times of 10 and 15 min, and the ultrasonic method with a rinsing time of 15 min.

A Development of Unbalanced Box Stacking System with High Stability using the Center of Gravity Measurement (무게중심 측정을 이용한 불평형 상자의 고안정 적재 시스템 개발)

  • Seong-Woo Bae;Dae-Gyu Han;Jae-Ho Ryu;Hyeon-hui Lee;Chae-Hun An
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.229-237
    • /
    • 2024
  • The logistics industry is converging with digital technology and growing into various logistics automation systems. However, inspection and loading/unloading, which are mainly performed in logistics work, depend on human resources, and the workforce is shrinking due to the decline in the productive population due to the low birth rate and aging. Although much research is being conducted on the development of automated logistics systems to solve these problems, there is a lack of research and development on load stacking stability, which has the potential to cause significant accidents. In this study, loading boxes with various sizes and positions of the center of gravity were set up, and a method for stacking that with high stability is presented. The size of the loading box is measured using a depth camera. The loading box's weight and center of gravity are measured and estimated by a developed device with four loadcells. The measurement error is measured through various repeated experiments and is corrected using the least squares method. The robot arm performs load stacking by determining the target position so that the centers of gravity of the loading boxes with unbalanced masses with a random sequence are transported in alignment. All processes were automated, and the results were verified by experimentally confirming load stacking stability.

A Study on Design and Analysis of Method for MR-based 3D Biological Object Recognition and Matching (MR 기반 3차원 생체 객체 인식 및 정합을 위한 방법 설계와 해석 연구)

  • Jin-Pyo Jo;Yong-Bae Jeong
    • Journal of Platform Technology
    • /
    • v.12 no.2
    • /
    • pp.23-33
    • /
    • 2024
  • The development of mixed reality (MR) technology has a great influence on the research and development of medical support equipment. In particular, it supports to respond effectively to emergencies occurring in the field. MR technology enables access to first aid and field support by combining virtual information with the real world so that users can see virtual objects in the real world. However, due to the nature of the equipment, there is a limitation in accurately matching virtual objects based on user vision. To improve these limitations, this paper proposes a 3D biometric object recognition and matching algorithm in the MR environment. As a result of the experiment, when a virtual object is rendered and visualized while equipped with an optical-based HMD from the user's side, it was possible to reduce the user's field of view error and eliminate the joint-loss phenomenon during skeleton recognition. The proposed method can reduce errors between the real user's field of view and the virtual image and provide a basis for reducing errors that occur in the process of virtual object recognition and matching. It is expected that this study will contribute to improving the accuracy of the telemedicine support system for first aid.

  • PDF

A Study on Touchless Finger Vein Recognition Robust to the Alignment and Rotation of Finger (손가락 정렬과 회전에 강인한 비 접촉식 손가락 정맥 인식 연구)

  • Park, Kang-Ryoung;Jang, Young-Kyoon;Kang, Byung-Jun
    • The KIPS Transactions:PartB
    • /
    • v.15B no.4
    • /
    • pp.275-284
    • /
    • 2008
  • With increases in recent security requirements, biometric technology such as fingerprints, faces and iris recognitions have been widely used in many applications including door access control, personal authentication for computers, internet banking, automatic teller machines and border-crossing controls. Finger vein recognition uses the unique patterns of finger veins in order to identify individuals at a high level of accuracy. This paper proposes new device and methods for touchless finger vein recognition. This research presents the following five advantages compared to previous works. First, by using a minimal guiding structure for the finger tip, side and the back of finger, we were able to obtain touchless finger vein images without causing much inconvenience to user. Second, by using a hot mirror, which was slanted at the angle of 45 degrees in front of the camera, we were able to reduce the depth of the capturing device. Consequently, it would be possible to use the device in many applications having size limitations such as mobile phones. Third, we used the holistic texture information of the finger veins based on a LBP (Local Binary Pattern) without needing to extract accurate finger vein regions. By using this method, we were able to reduce the effect of non-uniform illumination including shaded and highly saturated areas. Fourth, we enhanced recognition performance by excluding non-finger vein regions. Fifth, when matching the extracted finger vein code with the enrolled one, by using the bit-shift in both the horizontal and vertical directions, we could reduce the authentic variations caused by the translation and rotation of finger. Experimental results showed that the EER (Equal Error Rate) was 0.07423% and the total processing time was 91.4ms.

Prediction of Uniaxial Compressive Strength of Rock using Shield TBM Machine Data and Machine Learning Technique (쉴드 TBM 기계 데이터 및 머신러닝 기법을 이용한 암석의 일축압축강도 예측)

  • Kim, Tae-Hwan;Ko, Tae Young;Park, Yang Soo;Kim, Taek Kon;Lee, Dae Hyuk
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.214-225
    • /
    • 2020
  • Uniaxial compressive strength (UCS) of rock is one of the important factors to determine the advance speed during shield TBM tunnel excavation. UCS can be obtained through the Geotechnical Data Report (GDR), and it is difficult to measure UCS for all tunneling alignment. Therefore, the purpose of this study is to predict UCS by utilizing TBM machine driving data and machine learning technique. Several machine learning techniques were compared to predict UCS, and it was confirmed the stacking model has the most successful prediction performance. TBM machine data and UCS used in the analysis were obtained from the excavation of rock strata with slurry shield TBMs. The data were divided into 8:2 for training and test and pre-processed including feature selection, scaling, and outlier removal. After completing the hyper-parameter tuning, the stacking model was evaluated with the root-mean-square error (RMSE) and the determination coefficient (R2), and it was found to be 5.556 and 0.943, respectively. Based on the results, the sacking models are considered useful in predicting rock strength with TBM excavation data.

A Method for Determining Face Recognition Suitability of Face Image (얼굴영상의 얼굴인식 적합성 판정 방법)

  • Lee, Seung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.295-302
    • /
    • 2018
  • Face recognition (FR) has been widely used in various applications, such as smart surveillance systems, immigration control in airports, user authentication in smart devices, and so on. FR in well-controlled conditions has been extensively studied and is relatively mature. However, in unconstrained conditions, FR performance could degrade due to undesired characteristics of the input face image (such as irregular facial pose variations). To overcome this problem, this paper proposes a new method for determining if an input image is suitable for FR. In the proposed method, for an input face image, reconstruction error is computed by using a predefined set of reference face images. Then, suitability can be determined by comparing the reconstruction error with a threshold value. In order to reduce the effect of illumination changes on the determination of suitability, a preprocessing algorithm is applied to the input and reference face images before the reconstruction. Experimental results show that the proposed method is able to accurately discriminate non-frontal and/or incorrectly aligned face images from correctly aligned frontal face images. In addition, only 3 ms is required to process a face image of $64{\times}64$ pixels, which further demonstrates the efficiency of the proposed method.

Motion Vector Based Overlay Metrology Algorithm for Wafer Alignment (웨이퍼 정렬을 위한 움직임 벡터 기반의 오버레이 계측 알고리즘 )

  • Lee Hyun Chul;Woo Ho Sung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.3
    • /
    • pp.141-148
    • /
    • 2023
  • Accurate overlay metrology is essential to achieve high yields of semiconductor products. Overlay metrology performance is greatly affected by overlay target design and measurement method. Therefore, in order to improve the performance of the overlay target, measurement methods applicable to various targets are required. In this study, we propose a new algorithm that can measure image-based overlay. The proposed measurement algorithm can estimate the sub-pixel position by using a motion vector. The motion vector may estimate the position of the sub-pixel unit by applying a quadratic equation model through polynomial expansion using pixels in the selected region. The measurement method using the motion vector can calculate the stacking error in all directions at once, unlike the existing correlation coefficient-based measurement method that calculates the stacking error on the X-axis and the Y-axis, respectively. Therefore, more accurate overlay measurement is possible by reflecting the relationship between the X-axis and the Y-axis. However, since the amount of computation is increased compared to the existing correlation coefficient-based algorithm, more computation time may be required. The purpose of this study is not to present an algorithm improved over the existing method, but to suggest a direction for a new measurement method. Through the experimental results, it was confirmed that measurement results similar to those of the existing method could be obtained.

Microbial Forensics: Comparison of MLVA Results According to NGS Methods, and Forensic DNA Analysis Using MLVA (미생물법의학: 차세대염기서열분석 방법에 따른 MLVA 결과 비교 및 이를 활용한 DNA 감식)

  • Hyeongseok Yun;Seungho Lee;Seunghyun Lim;Daesang Lee;Sehun Gu;Jungeun Kim;Juhwan Jeong;Seongjoo Kim;Gyeunghaeng Hur;Donghyun Song
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.507-515
    • /
    • 2024
  • Microbial forensics is a scientific discipline for analyzing evidence related to biological crimes by identifying the origin of microorganisms. Multiple locus variable number tandem repeat analysis(MLVA) is one of the microbiological analysis methods used to specify subtypes within a species based on the number of tandem repeat in the genome, and advances in next generation sequencing(NGS) technology have enabled in silico anlysis of full-length whole genome sequences. In this paper, we analyzed unknown samples provided by Robert Koch Institute(RKI) through The United Nations Secretary-General's Mechanism(UNSGM)'s external quality assessment exercise(EQAE) project, which we officially participated in 2023. We confirmed that the 3 unknown samples were B. anthracis through nucleic acid isolation and genetic sequence analysis studies. MLVA results on 32 loci of B. anthracis were analysed by using genome sequences obtained from NGS(NextSeq and MinION) and Sanger sequencing. The MLVA typing using short-reads based NGS platform(NextSeq) showed a high probability of causing assembly error when a size of the tandem repeats was grater than 200 bp, while long-reads based NGS platform(MinION) showed higher accuracy than NextSeq, although insertion and deletion was observed. We also showed hybrid assembly can correct most indel error caused by MinION. Based on the MLVA results, genetic identification was performed compared to the 2,975 published MLVA databases of B. anthracis, and MLVA results of 10 strains were identical with 3 unkonwn samples. As a result of whole genome alignment of the 10 strains and 3 unknown samples, all samples were identified as B. anthracis strain A4564 which is associated with injectional anthrax isolates in heroin users.

Evaluate the Change of Body Shape and the Patient Alignment State During Image-Guided Volumetric Modulated Arc Therapy in Head and Neck Cancer Patients (두경부 환자의 VMAT 시 체형변화와 환자 정렬과의 상관관계 고찰)

  • Seo, Se Jeong;Kim, Tae Woo;Choi, Min Ho;Son, Jong Gi
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.109-117
    • /
    • 2017
  • Objectives: The purpose of this study was to evaluate the change of body shape and the patient alignment state during image-guided volumetric modulated arc therapy in head and neck cancer patients, Materials and Methods: We performed a image-guided volumetric modulated arc therapy plan for 89 patients with head and neck cancer who underwent curative radiotherapy. Ten of them were evaluated for set up error. The landmarks of the ramus, chin, posterior neck, and clavicle were specified using ARIA software (Offline review), and the positional difference was analyzed. Results: The re-CT simulation therapy was performed in 60 men with $17{\pm}4$ cycles of treatment. The weight loss rate was $-6.47{\pm}3.5%$. 29 women performed re-CT simulation at $17{\pm}5$ cycles As a result, weight loss rate was $-5.73{\pm}2.7%$. The distance from skin to C1, C3, and C5 was measured, and both clavicle levels were observed to measure the skin shrinkage changes. The skin shrinkage standard deviations were C1 (${\pm}0.44cm$), C3 (${\pm}0.83cm$), and C5 (${\pm}1.35cm$), which is about 1 mm shrinkage per 0.5 kg reduction. Skin shrinkage according to the number of treatments was 1 ~ 4 fractions (no change), 5 ~ 13 fractions (-2 mm), 14 ~ 22 fractions (-4 mm) and 23 ~ 30 fractions (-6 mm). Conclusion: When the body shape changes about 5 mm, the central dose starts to differ about 3 % or more. Therefore, the CT simulation treatment for the adaptive therapy should be additionally performed. In addition, it is necessary to actively study the CT simulation therapy method and set up method of the lower neck and to examine the use of a new immobilization device.

  • PDF