• Title/Summary/Keyword: Aligned thin film

Search Result 115, Processing Time 0.032 seconds

Self-Aligned Offset Poly-Si TFT using Photoresist reflow process (Photoresist reflow 공정을 이용한 자기정합 오프셋 poly-Si TFT)

  • Yoo, Juhn-Suk;Park, Cheol-Min;Min, Byung-Hyuk;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1582-1584
    • /
    • 1996
  • The polycrystalline silicon thin film transistors (poly-Si TFT) are the most promising candidate for active matrix liquid crystal displays (AMLCD) for their high mobilities and current driving capabilities. The leakage current of the poly-Si TFT is much higher than that of the amorphous-Si TFT, thus larger storage capacitance is required which reduces the aperture ratio fur the pixel. The offset gated poly-Si TFTs have been widely investigated in order to reduce the leakage current. The conventional method for fabricating an offset device may require additional mask and photolithography process step, which is inapplicable for self-aligned source/drain ion implantation and rather cost inefficient. Due to mis-alignment, offset devices show asymmetric transfer characteristics as the source and drain are switched. We have proposed and fabricated a new offset poly-Si TFT by applying photoresist reflow process. The new method does not require an additional mask step and self-aligned ion implantation is applied, thus precise offset length can be defined and source/drain symmetric transfer characteristics are achieved.

  • PDF

Photoelectrochemical Properties of a Vertically Aligned Zinc Oxide Nanorod Photoelectrode (수직으로 정렬된 산화아연 나노막대 광전극의 광전기화학적 특성)

  • Park, Jong-Hyun;Kim, Hyojin
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.4
    • /
    • pp.237-242
    • /
    • 2018
  • We report on the fabrication and photoelectrochemical (PEC) properties of a ZnO nanorod array structure as an efficient photoelectrode for hydrogen production from sunlight-driven water splitting. Vertically aligned ZnO nanorods were grown on an indium-tin-oxide-coated glass substrate via seed-mediated hydrothermal synthesis method with the use of a ZnO nanoparticle seed layer, which was formed by thermally oxidizing a sputtered Zn metal thin film. The structural and morphological properties of the synthesized ZnO nanorods were examined using X-ray diffraction and scanning electron microscopy, as well as Raman scattering. The PEC properties of the fabricated ZnO nanorod photoelectrode were evaluated by photocurrent conversion efficiency measurements under white light illumination. From the observed PEC current density versus voltage (J-V) behavior, the vertically aligned ZnO nanorod photoelectrode was found to exhibit a negligible dark current and high photocurrent density, e.g., $0.65mA/cm^2$ at 0.8 V vs Ag/AgCl in a 1 mM $Na_2SO_4$ electrolyte. In particular, a significant PEC performance was observed even at an applied bias of 0 V vs Ag/AgCl, which made the device self-powered.

Microstructure Control of Porous Ceramics by Freeze-Drying of Aqueous Slurry (동결건조공정을 이용한 다공성 세라믹스의 미세구조 제어)

  • 황해진;문지웅
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.229-234
    • /
    • 2004
  • In this study, we proposed new forming process for a porous ceramic body with unique pore structure. h tubular-type porous NiO-YSZ body with radially aligned pore channels was prepared by freeze-drying of aqueous slurry. A NiO-YSZ slurry was poured into the mold, which was designed to control the crystallization direction of the ice, followed by freezing. Thereafter the ice was sublimated at a reduced pressure. SEM observations revealed that the NiO-YSZ porous body showed aligned large pore channels parallel to the ice growth direction, and fine pores are formed around the outer surface of the tube. It was considered that the difference in the ice growth rate during the freezing process resulted in such a characteristic microstructure. Bilayer consisting of dense thin electrolyte film of YSZ onto the tubular type porous body has been successfully fabricated using a slurry-coating process followed by co-firing. It was regarded that the obtained bilayer structure is suitable for constructing electrode-support type electrochemical devices such as solid oxide fuel cells.

Fabrication of $(Pb,La)TiO_3$ Thin Films by Pulsed Laser Ablation (레이저 어블레이션에 의한 $(Pb,La)TiO_3$ 박막의 제작)

  • Park, Jeong-Heum;Kim, Joon-Han;Lee, Sang-Yeol;Park, Chong-Woo;Park, Chang-Yub
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.2
    • /
    • pp.133-137
    • /
    • 1998
  • $(Pb_{0.72}La_{0.28})Ti_{0.93}O_3(PLT(28))$ thin films were fabricated by pulsed laser deposition. PLT films deposited on $Pt/Ti/SiO_2/Si$ at $600^{\circ}C$ had a preferred orientation in (111) plane and at $550^{\circ}C$ had a (100) preferred orientation. We found that (111) preferred oriented films had well grown normal to substrate surface. This PLT(28) thin films of $1{\mu}m$ thickness had dielectric properties of ${\varepsilon}_r$=1300, dielectric $loss{\fallingdotseq}0.03 $. and had charge storage density of 10 [${\mu}C/cm^2$] and leakage current density of less than $10^{-6}[A/cm^2]$ at 100[kV/cm]. These results indicated that the PLT(28) thin films fabricated by pulsed laser deposition are suitable for DRAM capacitor application.

  • PDF

Fabrication of transparent conductive thin films with Ag mesh shape using the polystyrene beads monolayer

  • Jung, Taeyoung;Choi, Eun Chang;Hong, Byungyou
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.313-313
    • /
    • 2016
  • Transparent conductive oxide (TCO) films have many disadvantages, such as rarity, possible exhaustion, process temperature limitations, and brittleness on a flexible substrate. In particular, as display technology moves toward flexible displays, TCO will become completely unsuitable due to its brittleness. To address theses issue, many researchers have been studying TCO substitutes. In recent efforts, metal nanowires, conducting polymers, carbon nanotube networks, graphene films, hybrid thin films, and metal meshes/grids have been evaluated as candidates to replace TCO electrodes. In this study, we fabricated the TCO film with Ag meshes shape using polystyrene (PS) beads monolayer on the substrate. The PS beads were used as a template to create the mesh pattern. We fabricated the monolayer on the flexible substrate (PES) with the well-aligned PS beads. Electrodes with Ag mesh shape were formed using this patterned monolayer. We could fabricated the Ag mesh electrode with the sheet resistance with $8ohm{\Omega}/{\Box}$.

  • PDF

Characteristics of Poly-Si TFTs Fabricated on Flexible Substrates using Sputter Deposited a-Si Films

  • Kim, Y.H.;Moon, D.G.;Kim, W.K.;Han, J.I.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.297-300
    • /
    • 2005
  • The characteristics of polycrystalline silicon thin-film transistors (poly-Si TFTs) fabricated using sputter deposited amorphous silicon (a-Si) precursor films are investigated. The a-Si films were deposited on flexible polymer substrates using argon-helium mixture gases to minimize the argon incorporation into the film. The precursor films were then laser annealed by using a XeCl excimer laser and a four-mask-processed poly-Si TFT was fabricated with fully self-aligned top gate structure. The fabricated pMOS TFT showed field-effect mobility of $32.4cm^2/V{\cdot}s$ and on/off ratio of $10^6$.

  • PDF

Boron Nitride Films Grown by Low Energy Ion Beam Assisted Deposition

  • Park, Young-Joon;Baik, Young-Joon;Lee, Jeong-Yong
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.129-133
    • /
    • 2000
  • Boron nitride films were synthesized with $N_2$ion flux of low energy, up to 100 eV, at different substrate temperatures of no heating, 200, 400, 500, and $800^{\circ}C$, respectively. Boron was supplied by e-beam evaporation at the rate of $1.5\AA$/sec. For all the conditions, hexagonal BN (h-BN) phase was mainly synthesized and high resolution transmission electron microscopy (HRTEM) showed that (002) planes of h-BN phase were aligned vertical to the Si substrate. The maximum alignment occurred around $400^{\circ}C$. In addition to major h-BN phase, transmission electron diffraction (TED) rings identified the formation of cubic BN (c-BN) phase. But HRTEM showed no distinct and continuous c-BN layer. These results suggest that c-BN phase may form in a scattered form even when h-BN phase is mainly synthesized under small momentum transfer by bombarding ions, which are not reconciled with the macro compressive stress model for the c-BN formation.

  • PDF

The Effect of Diffusion Barrier and thin Film Deposition Temperature on Change of Carbon Nanotubes Length (탄소나노튜브 길이 변화에 대한 확산방지층과 박막 증착 온도의 영향)

  • Hong, Soon-kyu;Lee, Hyung Woo
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.248-253
    • /
    • 2017
  • In this study, we investigate the effect of the diffusion barrier and substrate temperature on the length of carbon nanotubes. For synthesizing vertically aligned carbon nanotubes, thermal chemical vapor deposition is used and a substrate with a catalytic layer and a buffer layer is prepared using an e-beam evaporator. The length of the carbon nanotubes synthesized on the catalytic layer/diffusion barrier on the silicon substrate is longer than that without a diffusion barrier because the diffusion barrier prevents generation of silicon carbide from the diffusion of carbon atoms into the silicon substrate. The deposition temperature of the catalyst and alumina are varied from room temperature to $150^{\circ}C$, $200^{\circ}C$, and $250^{\circ}C$. On increasing the substrate temperature on depositing the buffer layer on the silicon substrate, shorter carbon nanotubes are obtained owing to the increased bonding force between the buffer layer and silicon substrate. The reason why different lengths of carbon nanotubes are obtained is that the higher bonding force between the buffer layer and the substrate layer prevents uniformity of catalytic islands for synthesizing carbon nanotubes.

Photo-assisted GaN wet-chemical Etching using KOH based solution (KOH계열 수용액을 이용한 GaN 박막의 photo-assisted 식각 특성)

  • Lee, Hyoung-Jin;Song, Hong-Ju;Choi, Hong-Goo;Ha, Min-Woo;Roh, Cheong-Hyun;Lee, Jun-Ho;Park, Jung-Ho;Hahn, Cheol-Koo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.339-339
    • /
    • 2010
  • Photo-assisted wet chemical etching of GaN thin film was studied using KOH based solutions. A $2{\mu}m-2{\mu}m$ titanium line-and-space pattern was used as a etching mask. It is found that the etching characteristics of the GaN thin film is strongly dependent on the pattern direction by unisotropic property of KOH based solution. When the pattern was aligned to the [$11\bar{2}0$] directions, ($10\bar{1}n$)-facet is revealed constructing V-shaped sidewalls.

  • PDF

스퍼터링 방법으로 성장시킨 나노구조의 Ga 농도 변화에 따른 형상 변화

  • Kim, Yeong-Lee;U, Chang-Ho;Jo, Hyeong-Gyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.23.1-23.1
    • /
    • 2009
  • ZnO is of great interest for various technological applications ranging from optoelectronics to chemical sensors because of its superior emission, electronic, and chemical properties. In addition, vertically well-aligned ZnO nanorods on large areas with good optical and structural properties are of special interest for the fabrication of electronic and optical nanodevices. To date, several approaches have been proposed for the growth of one-dimensional (1D) ZnO nanostructunres. Several groups have been reported the MOCVD growth of ZnO nanorods with no metal catalysts at $400^{\circ}C$, and fabricated a well-aligned ZnO nanorod array on a PLD prepared ZnO film by using a catalyst-free method. It has been suggested that the synthesis of ZnO nanowires using a template-less/surfactant-free aqueous method. However, despite being a well-established and cost-effective method of thin film deposition, the use of magnetrons puttering to grow ZnO nanorods has not been reported yet. Additionally,magnetron sputtering has the dvantage of producing highly oriented ZnO film sat a relatively low process temperature. Currently, more effort has been concentrated on the synthesis of 1D ZnO nanostructures doped with various metal elements (Al, In, Ga, etc.) to obtain nanostructures with high quality,improved emission properties, and high conductance in functional oxide semiconductors. Among these dopants, Ga-doped ZnO has demonstrated substantial advantages over Al-doped ZnO, including greater resistant to oxidation. Since the covalent bond length of Ga-O ($1.92\;{\AA}$) is nearly equal to that of Zn-O ($1.97\;{\AA}$), high electron mobility and low electrical resistivity are also expected in the Ga-doped ZnO. In this article, we report the successful growth of Ga-doped ZnO nanorods on c-Sapphire substrate without metal catalysts by magnetrons puttering and our investigations of their structural, optical, and field emission properties.

  • PDF