• Title/Summary/Keyword: Algorithm save

Search Result 368, Processing Time 0.032 seconds

Virtual Machine Placement Algorithm for Saving Energy and Avoiding Heat Islands in High-Density Cloud Computing Environment (고밀도 클라우드 컴퓨팅 환경에서 에너지 절감 및 열섬 방지를 위한 가상 머신 배치 알고리즘)

  • Choi, JungYul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.10
    • /
    • pp.1233-1235
    • /
    • 2016
  • It is desirable to place virtual machines for minimizing the number of operational servers in order to save energy in high-density cloud computing environment. However, the compacted servers can incur heat islands. This paper firstly finds out the relationship between the server utilization by the virtual machine placement and the energy consumption of servers and heat from servers. Then, this paper proposes a virtual machine placement algorithm to save energy consumed and avoid heat islands.

A New Overlap Save Algorithm for Fast Convolution (고속 컨벌루션을 위한 새로운 중첩보류기법)

  • Kuk, Jung-Gap;Cho, Nam-Ik
    • Journal of Broadcast Engineering
    • /
    • v.14 no.5
    • /
    • pp.543-550
    • /
    • 2009
  • The most widely used block convolution method is the overlap save algorithm (OSA), where a block of M data to be convolved with a filter is concatenated with the previous block and 2M-point FFT and multiplications are performed for this overlapped block. By discarding half of the results, we obtain linear convolution results from the circular convolution. This paper proposes a new transform which reduces the block size to only M for the block convolution. The proposed transform can be implemented as the M multiplications followed by M-point FFT Hence, existing efficient FFT libraries and hardware can be exploited for the implementation of proposed method. Since the required transform size is half that of the conventional method, the overall computational complexity is reduced. Also the reduced transform size results in the reduction of data access time and cash miss-hit ratio, and thus the overall CPU time is reduced. Experiments show that the proposed method requires less computation time than the conventional OSA.

Thermo-mechanical Contact Analysis on Disk Brakes by Using Simplex Algorithm

  • Cho, C.;Sun, Chan-Woong;Kim, Ju-Yong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.399-400
    • /
    • 2002
  • A numerical procedure for analyzing thermo-elastic contact applied to an automotive disk brake and calculating subsurface stress distribution has been developed. The proposed procedure takes the advantage of the simplex algorithm to save computing time. Flamant's solution and Boussinesq's solution are adopted as Green function in analysis. Comparing the numerical results with the exact solutions has proved the validity of this procedure.

  • PDF

Computational Complexity Comparison of Second-Order Volterrra Filtering Algorithms

  • Im, Sungin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2E
    • /
    • pp.38-46
    • /
    • 1997
  • The objective of the paper is to compare the computational complexity of five algorithms for computing time-domain second-order Volterra filter outputs in terms of number of real multiplication and addition operations required for implementation. This study shows that if the filter memory length is greater that or equal to 16, the fast algorithm using the overlap-save method and the frequency-domain symmetry properties of the quadratic coefficients is the most efficient among the algorithms investigated in this paper, When the filter memory length is less than 16, the algorithm using the time-domain symmetry properties is better than any other algorithm.

  • PDF

Design of the Wavelet Transform Domain Sign Algorithm (웨이블릿 변환영역 사인(Sign) 알고리즘의 설계)

  • Lee, Woong-Jae;Yoo, Kyung-Yul
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2442-2444
    • /
    • 1998
  • This paper presents a method for designing a multiresolution orthogonal wavelet transform matrix and it is extended to the establishment of the wavelet transform domain sign algorithms(SA). It outperforms the conventional sign algorithm, with performance comparable to the LMS algorithm. Together with Daubechies type 1 wavelet, we could also save additional computations which are required in transforming data.

  • PDF

CRG Algorithm and nTCAM for the Efficient Packet Filtering System (효율적인 패킷 필터링 시스템을 위한 CRG 알고리즘과 nTCAM)

  • Kim Yong-Kwon;Lee Soon-Seok;Kim Young-Sun;Ki Jang-Geun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8B
    • /
    • pp.745-756
    • /
    • 2006
  • The general packet filtering system using TCAM has some limitations such as range and negation rules filtering, so this paper proposes efficient searching schemes than existing methods. CRG(Converting Range rules using Gray code) algorithm, in the case of range rules, that takes advantage of the gray code and TCAM characteristics to save a number of TCAM entries is proposed, and a nTCAM(TCAM with negation) architecture for negation rules is proposed, implemented using a FPGA design tool, and verified through the wave simulation. According to the simulation with the SNORT rules, the CRG algorithm and nTCAM save TCAM entries about 93% in IPv4 and 98% in IPv6 than the existing method.

Bead Visualization Using Spline Algorithm (스플라인 알고리즘을 이용한 비드 가시화)

  • Koo, Chang-Dae;Yang, Hyeong-Seok;Kim, Maeng-Nam
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.54-58
    • /
    • 2016
  • In this research paper, suggest method of generate same bead as an actual measurement data in virtual welding conditions, exploit morphology information of the bead that acquired through robot welding. It has many multiple risk factors to Beginners welding training, by we make possible to train welding in virtual reality, we can reduce welding training risk and welding material to exploit bead visualization algorithm that we suggest so it will be expected to achieve educational, environmental and economical effect. The proposed method is acquire data to each case performing robot welding by set the voltage, current, working angle, process angle, speed and arc length of welding condition value. As Welding condition value is most important thing in decide bead form, we would selected one of baseline each item and then acquired metal followed another factors change. Welding type is FCAW, SMAW and TIG. When welding trainee perform the training, it's difficult to save all of changed information into database likewise working angle, process angle, speed and arc length. So not saving data into database are applying the method to infer the form of bead using a neural network algorithm. The way of bead's visualization is applying the spline algorithm. To accurately represent Morphological information of the bead, requires much of morphological information, so it can occur problem to save into database that is why we using the spline algorithm. By applying the spline algorithm, it can make simplified data and generate accurate bead shape. Through the research paper, the shape of bead generated by the virtual reality was able to improve the accuracy when compared using the form of bead generated by the robot welding to using the morphological information of the bead generated through the robot welding. By express the accurate shape of bead and so can reduce the difference of the actual welding training and virtual welding, it was confirmed that it can be performed safety and high effective virtual welding education.

Multi-Level Optimization for Steel Frames using Discrete Variables (이산형 변수를 이용한 뼈대구조물의 다단계 최적설계)

  • 조효남;민대용;박준용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.115-124
    • /
    • 2000
  • An efficient multi-level (EML) optimization algorithm using discrete variables of framed structures is proposed in this paper. For the efficiency of the proposed algorithm multi-level optimization techniques using a decomposition method that separates both system-level and element-level are incorporated in the algorithm In the system-level, to save the numerical efforts an efficient reanalysis technique through approximated structural responses such as moments and frequencies with respect to intermediate variables is proposed in the paper. Sensitivity analysis of dynamic structural response is executed by automatic differentiation (AD) that is a powerful technique for computing complex or implicit derivatives accurately and efficiently with minimal human effort. In the element-level, to use AISC W-sections a section search algorithm is introduced. The efficiency and robustness of the EML algorithm, compared with a conventional multi-level (CML) algorithm and single-level genetic algorithm is successfully demonstrated in the numerical examples.

  • PDF

Efficient lookup Table-based Multiplication Algorithm on 8-bit Processor (8-bit 환경에서 Lookup table 기반의 효율적인 곱셈 알고리즘)

  • Seo, Seog-Chung;Jung, Hae-Il;Han, Dong-Guk;Hong, Seok-Hie
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.323-326
    • /
    • 2008
  • This paper describes some field multiplication algorithm over GF($2^m$) on 8-bit processor. Through performance comparisons among algorithm, we show that our proposal is faster than existing algorithms. The proposed algorithm save 26.38% of running time compared with naive comb multiplication algorithm which is a kind of lookup-table (LUT) based algorithm. With the proposed algorithm, a scalar multiplication over GF($2^{163}$) can be computed within 1.04 secs on 8-bit MICAz sensor mote.

  • PDF

High Speed Modular Multiplication Algorithm for RSA Cryptosystem (RSA 암호 시스템을 위한 고속 모듈라 곱셈 알고리즘)

  • 조군식;조준동
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3C
    • /
    • pp.256-262
    • /
    • 2002
  • This paper presents a novel radix-4 modular multiplication algorithm based on the sign estimation technique (3). The sign estimation technique detects the sign of a number represented in the form of a carry-sum pair. It can be implemented with 5-bit carry look-ahead adder. The hardware speed of the cryptosystem is dependent on the performance modular multiplication of large numbers. Our algorithm requires only (n/2+3) clock cycle for n bit modulus in performing modular multiplication. Our algorithm out-performs existing algorithm in terms of required clock cycles by a half, It is efficient for modular exponentiation with large modulus used in RSA cryptosystem. Also, we use high-speed adder (7) instead of CPA (Carry Propagation Adder) for modular multiplication hardware performance in fecal stage of CSA (Carry Save Adder) output. We apply RL (Right-and-Left) binary method for modular exponentiation because the number of clock cycles required to complete the modular exponentiation takes n cycles. Thus, One 1024-bit RSA operation can be done after n(n/2+3) clock cycles.