• 제목/요약/키워드: Algorithm Model

검색결과 12,989건 처리시간 0.042초

다차원 평면 클러스터를 이용한 자기 구성 퍼지 모델링 (Self-Organizing Fuzzy Modeling Based on Hyperplane-Shaped Clusters)

  • 고택범
    • 제어로봇시스템학회논문지
    • /
    • 제7권12호
    • /
    • pp.985-992
    • /
    • 2001
  • This paper proposes a self-organizing fuzzy modeling(SOFUM)which an create a new hyperplane shaped cluster and adjust parameters of the fuzzy model in repetition. The suggested algorithm SOFUM is composed of four steps: coarse tuning. fine tuning cluster creation and optimization of learning rates. In the coarse tuning fuzzy C-regression model(FCRM) clustering and weighted recursive least squared (WRLS) algorithm are used and in the fine tuning gradient descent algorithm is used to adjust parameters of the fuzzy model precisely. In the cluster creation, a new hyperplane shaped cluster is created by applying multiple regression to input/output data with relatively large fuzzy entropy based on parameter tunings of fuzzy model. And learning rates are optimized by utilizing meiosis-genetic algorithm in the optimization of learning rates To check the effectiveness of the suggested algorithm two examples are examined and the performance of the identified fuzzy model is demonstrated via computer simulation.

  • PDF

Surrogate based model calibration for pressurized water reactor physics calculations

  • Khuwaileh, Bassam A.;Turinsky, Paul J.
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1219-1225
    • /
    • 2017
  • In this work, a scalable algorithm for model calibration in nuclear engineering applications is presented and tested. The algorithm relies on the construction of surrogate models to replace the original model within the region of interest. These surrogate models can be constructed efficiently via reduced order modeling and subspace analysis. Once constructed, these surrogate models can be used to perform computationally expensive mathematical analyses. This work proposes a surrogate based model calibration algorithm. The proposed algorithm is used to calibrate various neutronics and thermal-hydraulics parameters. The virtual environment for reactor applications-core simulator (VERA-CS) is used to simulate a three-dimensional core depletion problem. The proposed algorithm is then used to construct a reduced order model (a surrogate) which is then used in a Bayesian approach to calibrate the neutronics and thermal-hydraulics parameters. The algorithm is tested and the benefits of data assimilation and calibration are highlighted in an uncertainty quantification study and requantification after the calibration process. Results showed that the proposed algorithm could help to reduce the uncertainty in key reactor attributes based on experimental and operational data.

퍼지 결합 다항식 뉴럴 네트워크 (Fuzzy Combined Polynomial Neural Networks)

  • 노석범;오성권;안태천
    • 전기학회논문지
    • /
    • 제56권7호
    • /
    • pp.1315-1320
    • /
    • 2007
  • In this paper, we introduce a new fuzzy model called fuzzy combined polynomial neural networks, which are based on the representative fuzzy model named polynomial fuzzy model. In the design procedure of the proposed fuzzy model, the coefficients on consequent parts are estimated by using not general least square estimation algorithm that is a sort of global learning algorithm but weighted least square estimation algorithm, a sort of local learning algorithm. We are able to adopt various type of structures as the consequent part of fuzzy model when using a local learning algorithm. Among various structures, we select Polynomial Neural Networks which have nonlinear characteristic and the final result of which is a complex mathematical polynomial. The approximation ability of the proposed model can be improved using Polynomial Neural Networks as the consequent part.

A Modified Heuristic Algorithm for the Mixed Model Assembly Line Balancing

  • 이성열
    • 한국산업정보학회논문지
    • /
    • 제15권3호
    • /
    • pp.59-65
    • /
    • 2010
  • This paper proposes a modified heuristic mixed model assembly line (MMAL) balancing algorithm that provides consistent station assignments on a model by model basis as well as on a station by station. Basically, some of single model line balancing techniques are modified and incorporated to be fit into the MMAL. The proposed algorithm is based on N.T. Thomopoulos' [8] method and supplemented with several well proven single model line balancing techniques proposed in the literature until recently. Hoffman's precedence matrix [2] is used to indicate the ordering relations among tasks. Arcus' Rule IX [1] is applied to generate rapidly a fairly large number of feasible solutions. Consequently, this proposed algorithm reduces the fluctuations in operation times among the models as well as the stations and the balance delays. A numerical example shows that the proposed algorithm can provide a good feasible solution in a relatively short time and generate relatively better solutions comparing to other three existing methods.

효율적인 유전알고리듬을 이용하여 양면.혼합모델 작업라인 균형에 대한 연구 (A Study of Balancing at Two-sided and Mixed Model Work Line Using Genetic Algorithm)

  • 이내형;조남호
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2002년도 춘계학술대회
    • /
    • pp.91-97
    • /
    • 2002
  • In this thesis presents line balancing problems of two-sided and mixed model assembly line widely used in practical fields using genetic algorithm for reducing throughput time, cost of tools and fixtures and improving flexibility of assembly lines. Two-sided and mixed model assembly line is a special type of production line where variety of product similar in product characteristics are assembled in both sides. This thesis proposes the genetic algorithm adequate to each step in tow-sided and mixed model assembly line with suitable presentation, individual, evaluation function, selection and genetic parameter. To confirm proposed genetic algorithm, we apply to increase the number of tasks in case study. And for evaluation the performance of proposed genetic algorithm, we compare to existing algorithm of one-sided and mixed model assembly line. The results show that the algorithm is outstanding in the problems with a larger number of stations or larger number of tasks.

  • PDF

유전알고리듬을 이용한 양면.혼합모델 조립라인 밸런싱 (A Study on the Two-sided and Mixed Model Assembly Line Balancing Using Genetic Algorithm)

  • 이내형;조남호
    • 대한안전경영과학회지
    • /
    • 제4권2호
    • /
    • pp.83-101
    • /
    • 2002
  • In this thesis presents line balancing problems of two-sided and mixed model assembly line widely used in practical fields using genetic algorithm for reducing throughput time, cost of tools and fixtures and improving flexibility of assembly lines. Two-sided and mixed model assembly line is a special type of production line where variety of product similar in product characteristics are assembled in both sides. This thesis proposes the genetic algorithm adequate to each step in tow-sided and mixed model assembly line with suitable presentation, individual, evaluation function, selection and genetic parameter. To confirm proposed genetic algorithm, we apply to increase the number of tasks in case study. And for evaluation the performance of proposed genetic algorithm, we compare to existing algorithm of one-sided and mixed model assembly line. The results show that the algorithm is outstanding in the problems with a larger number of stations or larger number of tasks.

작업준비시간이 없는 이종 병렬설비에서 총 소요 시간 최소화를 위한 미미틱 알고리즘 기반 일정계획에 관한 연구 (A Study on Memetic Algorithm-Based Scheduling for Minimizing Makespan in Unrelated Parallel Machines without Setup Time)

  • 이태희;유우식
    • 대한안전경영과학회지
    • /
    • 제25권2호
    • /
    • pp.1-8
    • /
    • 2023
  • This paper is proposing a novel machine scheduling model for the unrelated parallel machine scheduling problem without setup times to minimize the total completion time, also known as "makespan". This problem is a NP-complete problem, and to date, most approaches for real-life situations are based on the operator's experience or simple heuristics. The new model based on the Memetic Algorithm, which was proposed by P. Moscato in 1989, is a hybrid algorithm that includes genetic algorithm and local search optimization. The new model is tested on randomly generated datasets, and is compared to optimal solution, and four scheduling models; three rule-based heuristic algorithms, and a genetic algorithm based scheduling model from literature; the test results show that the new model performed better than scheduling models from literature.

Radar Remote Sensing of Soil Moisture and Surface Roughness for Vegetated Surfaces

  • Oh, Yi-Sok
    • 대한원격탐사학회지
    • /
    • 제24권5호
    • /
    • pp.427-436
    • /
    • 2008
  • This paper presents radar remote sensing of soil moisture and surface roughness for vegetated surfaces. A precise volume scattering model for a vegetated surface is derived based on the first-order radiative transfer technique. At first, the scattering mechanisms of the scattering model are analyzed for various conditions of the vegetation canopies. Then, the scattering model is simplified step by step for developing an appropriate inversion algorithm. For verifying the scattering model and the inversion algorithm, the polarimetric backscattering coefficients at 1.85 GHz, as well as the ground truth data, of a tall-grass field are measured for various soil moisture conditions. The genetic algorithm is employed in the inversion algorithm for retrieving soil moisture and surface roughness from the radar measurements. It is found that the scattering model agrees quite well with the measurements. It is also found that the retrieved soil moisture and surface roughness parameters agree well with the field-measured ground truth data.

유전자 알고리즘을 이용한 유출모형의 매개변수 추정 (Parameter Estimation of Runoff Model Using the Genetic Algorithm)

  • 조현경;이영화
    • 한국환경과학회지
    • /
    • 제12권10호
    • /
    • pp.1109-1116
    • /
    • 2003
  • The genetic algorithm is investigated fer parameters estimation of SED (storage - effective drainage) model from the Wi-stream watershed in Nakdong river basin. In the practical application of model, as a number of watershed parameters do not measure directly, it is desirable to make a good estimation from the known rainfall and runoff data. For the estimation of parameters of the SED model using the genetic algorithm, parameters of Green-Ampt equation(SM, K$\_$s/) for the estimation of an effective rainfall and initial storage(y$\_$in/) used in SED model are obtained a regression equation with 5, 10, 20 days antecedent precipitation. And as a consequence of computation, the parameters were obtained to satisfy the proposed objective function. From the comparison of observed and computed hydrographs, it shows a good agreement in the shape and the rising limb, peak, falling limb of hydrograph, so the SED model using the genetic algorithm shows a suitable model for runoff analysis in river basin.

Maneuvering Target Tracking Using Multiresolutional Interacting Multiple Model Filter

  • Yu, C,H.;Choi, J.W.;Song, T.L.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2340-2344
    • /
    • 2003
  • This paper considers a tracking filter algorithm which can track a maneuvering target. Multiresolutional Interacting Multiple Model (MRIMM) algorithm is proposed to reduce computational burden. In this paper multiresolutional state space model equation and multiresolutional measurement equation are derived by using wavelet transform. This paper shows the outline of MRIMM algorithm. Simulation results show that MRIMM algorithm maintains a good tracking performance and reduces computational burden.

  • PDF